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Section 3.1. The Completeness Relation

§ 1 Outline. In this chapter we use the definition of the probability that

a measurement of an observable yields a particular result, to derive an ex-

pression called the completeness relation or the resolution of identity. This

property is essential for obtaining numerical solutions of the Schrödinger

equation and for analyzing the physical properties of a system.

§ 2 A simple property of probability. We measure a quantity A that can

take one of the values {a1, a2, . . . , an}. If the measurement consists of flipping

a coin, the values that A can take are {head, tail}; if we roll a die, they

are {1, 2, 3, 4, 5, 6}. I denote the probability that a measurement of A gives
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the result ai by P (ai). To define this probability, I imagine performing the

measurement N times, where N is a very large number. I find that a1 is the

result of the measurement N1 times, a2 is the result N2 times, etc.

Obviously I have
n
∑

i=1

Ni

N
= 1 (1)

The probability that an observation gives ai is (by definition)

P (ai) ≡ lim
N→∞

Ni

N
(2)

Combining Eq. 1 with Eq. 2 gives
n
∑

i=1

P (ai) = 1 (3)

It is essential that this sum includes all possible values {a1, a2, . . . , an} of A.

Eq. 3 holds when n is finite or infinite.

§ 3 Application to quantum mechanics. Assume now that A is a quantum

mechanical observable, its spectrum is {a1, a2, a3, . . .}, and its continuous

spectrum is α ∈ D. If the state of the system is represented by the normalized

ket |ψ〉, the probability that a measurement of A yields the value ai is (see

previous chapter)

Pψ(ai) = |〈ai |ψ〉|2 (4)

The probability that the result of the measurement is a value between α and

α+ dα is

Pψ(α) dα = |〈α |ψ〉|2 dα, α ∈ D (5)

By definition, the spectrum contains all values that A can take and so Eq. 3

applies for these probabilities:
∞
∑

i=1

Pψ(ai) +
∫

α∈D
dαPψ(α) =

∞
∑

i=1

|〈ai |ψ〉|2 +
∫

α∈D
dα |〈α |ψ〉|2 = 1 (6)
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We have generalized Eq. 3 to include the continuous spectrum by using an

integral instead of a sum.

§ 4 Dirac notation: bras and operators. Before we dive into the intricacies

of Dirac notation, I remind you a few elementary facts about complex num-

bers and the scalar product. For any complex number z, we have |z|2 ≡ z∗z

where |z| is the absolute value of the complex number and z∗ is the complex

conjugate of z. I also remind you that for any scalar product, of any two

kets, we have 〈λ |µ〉 = 〈µ |λ〉∗. Combining this knowledge we can rewrite

the expression for probability as

|〈ai |ψ〉|2 = 〈ai|ψ〉∗〈ai|ψ〉 = 〈ψ | ai〉〈ai |ψ〉 (7)

. Using this result we can go on and rewrite Eq. 6 as

∞
∑

n=1

〈ψ | an〉 〈an |ψ〉 +
∫

α∈D
dα 〈ψ |α〉 〈α |ψ〉 = 1 (8)

As you may have noticed by now, mathematics is all about rewriting

expressions by using known rules. This may be fun but it is not particularly

exciting unless you are Dirac. He examined this expression and took it in a

truly innovative direction. He decided that it might be profitable (and it is)

to think that the expression

〈ψ | an〉 〈an |ψ〉 ≡ 〈ψ | (|an〉〈an|) |ψ〉 (9)

consists of three distinct entities: the bra 〈ψ|, the operator |an〉〈an|, and the

ket |ψ〉.
We already know what a ket is, but the bra and the operator are new

objects, defined by Eq. 9. Let us take a look at what they do.
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A bra 〈a| must be understood as a symbol that acts on a ket; the rule for

this action is

(〈a|)|ψ〉 = 〈a |ψ〉 (10)

Thus, a bra 〈a| acting on a ket |ψ〉 gives the complex number 〈a |ψ〉. For

every ket |η〉, in a given ket space, there is a corresponding bra 〈η| defined

by the rule given above. In addition, for every bra there is a ket. Bras and

kets are in a one-to-one correspondence. I emphasize that a bra 〈η| acting

on a ket |φ〉 must correspond to a ket that belongs to the same space as |φ〉.
It makes no sense to act with a bra corresponding to a state of the hydrogen

atom on a ket that represents the state of a harmonic operator. On the other

hand, one can act with a bra describing a state of a harmonic oscillator on a

ket describing the state of a particle in a box, as long as the potential energy

of the oscillator is contained in the box (details about this are given later in

this section). This happens because the states of the two systems belong to

the same linear space. I suspect that this seems rather vague now but it will

become very clear (and trivial) as you learn more about quantum mechanics.

The manner in which bras are defined allows us to derive rules of com-

putation for them. If |λ〉 = |η〉 + |µ〉 then we can use the properties of the

scalar product to write

〈λ |ψ〉 = 〈ψ |λ〉∗ = 〈ψ | η〉∗ + 〈ψ |µ〉∗ = 〈η |ψ〉 + 〈µ |ψ〉 (11)

Therefore we have the rule:

if |λ〉 = |η〉 + |µ〉 then 〈λ| = 〈η| + 〈µ| (12)

Similarly, if |η〉 = α|a〉, where α is a complex number, then

〈η |ψ〉 = 〈ψ | η〉∗ = 〈ψ |αa〉∗ = (α〈ψ | a〉)∗ = α∗〈a |ψ〉 (13)



3. Completeness and representations, December 29, 2014 6

and therefore, we have the rule:

if |η〉 = α|a〉 then 〈η| = α∗〈a| (14)

The operator

P̂ (an) ≡ |an〉〈an| (15)

is also a new mathematical object (meaning that we have not mentioned it

so far). By definition it acts on a ket |ψ〉 through the rule

P̂ (an)|ψ〉 = (|an〉〈an|)|ψ〉 = |an〉 〈an |ψ〉 (16)

An operator (in our case, |an〉〈an|) acts on a ket (in our case, |ψ〉) to produce

another ket (in our case, |an〉 〈an |ψ〉). The product |an〉 〈an |ψ〉 is a ket

because 〈an |ψ〉 is a complex number, |an〉 is a ket, and the product of a

complex number with a ket is a ket. In general, an operator is any object

that acts on a ket to generate another ket.

Keep in mind that the operator | an〉〈an | acts only on kets |ψ〉 that belong

to the same linear space as |an〉. If |an〉 describes states of the hydrogen atom,

it makes no sense to act with |an〉〈an| on a state |ψ〉 of a harmonic oscillator.

§ 5 The completeness relation. Now that we are comfortable with Dirac’s

notation, let us use it to rewrite Eq. 8 as

〈ψ | (
∞
∑

n=1

|an〉〈an| +
∫

α∈D
dα |α〉〈α|) |ψ〉 = 1 (17)

It will prove very convenient to introduce the notation

∞
∑

n=1

|an〉〈an| +
∫

α∈D
dα |α〉〈α| = Î (18)
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Obviously Î is an operator because it is a sum of the operators |an〉〈an| and

the integral over the operators |α〉〈α|. Î is however a peculiar operator as

you can see by using it in Eq. 17, which becomes

〈ψ|Î|ψ〉 = 1 (19)

Eq. 17 originates from the statement that the probability that the mea-

surement gives some result must be equal to 1. When we defined the prob-

ability in quantum mechanics, I emphasized that the state |ψ〉 must be nor-

malized, that is,

〈ψ|ψ〉 = 1 (20)

When you compare Eq. 19 with Eq. 20, you find that Î acts on a ket but has

no effect on it: in other words

Î|ψ〉 = |ψ〉 for any ket |ψ〉 (21)

Because of this, Î is called the unit operator and plays in the set of operators

the same role as the number 1 does in the multiplication of numbers (1×3 =

3). You must keep in mind that Î is the unit operator in the space to which

the |an〉 belong. A unit operator in the space of the states of a harmonic

oscillator is not a unit operator in the space formed by the states of hydrogen

atom.

The main result here is Eq. 18, which is called the completeness relation

for the pure states |an〉, n = 1, 2, . . ., and |α〉, α ∈ D. This is a very

complicated way of writing the operator Î , whose effect is to do nothing!

The “derivation” given above is not rigorous1. On the other hand, the result

1This derivation does not show that the infinite sum is convergent and that the integral
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rests on solid physical grounds: it is a consequence of the fact that the

probability that we get some result when we make a measurement is equal

to 1. To appreciate Dirac’s ingenuity, consider the fact that one has to study

intensely hundreds of pages of dense mathematics before one gets a rigorous

proof of the completeness relation. However, what follows will instill respect

for the fussiness of the mathematicians as we discover that the very general

expression of the completeness relation is misleading and its mechanical use

(i.e. without insight into its limitations) can lead to serious damage to the

reputation of the user.

§ 6 Completeness is valid, in principle, for the states of any observable. The

arguments made in deriving the completeness relation put no constraints

on the observable A; this relationship is valid for the pure states of any

observable.

Let us take as observable the position of a particle. The position is an

observable that has a continuous spectrum, which contains all real numbers

between −∞ and +∞. Let |x〉 denote the pure state in which we know for

certain that the particle is located at x. The completeness relation for these

pure states is

Î =
∫ +∞

−∞
dx |x〉〈x| (22)

We say that this equation expresses the unit operator Î in the coordinate

representation.

exists, which is particularly irritating to mathematicians. The definition of the operators

is also a bit cavalier, and this will lead to interesting complications that are discussed in

the remainder of this chapter.
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There is nothing special about position and we can play the same game

with the pure states |p〉 of momentum. We have

Î =
∫ +∞

−∞
dp |p〉〈p| (23)

because momentum is an observable with a purely continuous spectrum.

Eq. 23 gives the unit operator in the momentum representation.

A peculiar thing about the momentum and the position bras is that they

can act on any state, except the states of spin. However one must keep in

mind the dimensionality of the system. One can use Î defined by Eq. 22 to

act on the state of a harmonic oscillator or a particle in a box. However, one

must use

Î =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
dx dy dz |x〉|y〉|z〉 〈x|〈y|〈z| (24)

to act on the states of the electron in the hydrogen atom, because that system

is three-dimensional. We will use these formulae for Î very often and their

meaning and usage will become more and more clear as we advance.

The same remarks apply to the representation of Î that uses momentum

states.

Finally, the unit operator in the energy representation is

Î =
∞
∑

n=1

|En〉〈En| +
∫ ∞

0

dα |Eα〉〈Eα| (25)

where |En〉 and |Eα〉 are the pure states of energy. This representation con-

structs a unit operator acting only on the space to which the states |En〉
belong or a space that is mathematically equivalent (as we proceed this state-

ment will gain more substance).
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Section 3.2. Representation theory

§ 7 Various representations of a state |ψ〉. In many experiments in quan-

tum mechanics, we force the system (a molecule, a solid, etc.) to interact

with an external agent (light, an electron beam, etc.). When this interac-

tion stops, the system is left in a state |ψ〉. Quantum theory is then used

to calculate the properties of the system in this state: the probability that

the system has the energy En, or the average position of the particles in the

system, or the evolution of the state in time, etc.

Most of these calculations start by representing |ψ〉 in a convenient form.

One class of representations is generated by starting with the identity

|ψ〉 = Î |ψ〉 (26)

If A is an observable with the discrete spectrum {an}∞n=1 and the contin-

uous spectrum α ∈ D, we can write (we use the completeness relation)

Î =
∞
∑

n=1

|an〉 〈an| +
∫

α∈D
|α〉 〈α| dα (27)

Using this in |ψ〉 = Î |ψ〉 (i.e. Eq. 26), we obtain

|ψ〉 =
∞
∑

n=1

|an〉 〈an |ψ〉 +
∫

α∈D
|α〉 〈α |ψ〉 dα (28)

Here |an〉 and |α〉 are the pure states of the observable A. The coefficients

〈an |ψ〉 are complex numbers, and Pψ(an) = |〈an |ψ〉|2 is the probability that

a measurement of A, when the system is in the state |ψ〉, yields the value

an. The scalar products 〈α |ψ〉 are also complex numbers, and Pψ(α) dα =

|〈α |ψ〉|2 dα is the probability that A takes values between α and α+ dα when

the system is in state |ψ〉. Because of this connection, 〈an |ψ〉 (or 〈α |ψ〉) is
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called the probability amplitude of |an〉 (or |α〉) in state |ψ〉. Eq. 28 is called

the expression of |ψ〉 in the A representation. Mathematicians will call it the

representation of |ψ〉 as a linear combination of {|an〉}∞n=1 and {|α〉}α∈D.

The equation is not as universal as it might appear to the innocent. The

bras 〈an| must be such that the expression 〈an |ψ〉 is sensible and can be

evaluated. For example, it is not possible to expand a state |ψ〉 of harmonic

oscillator in terms of the states |an〉 of a hydrogen atom.

You will learn later that the pure states of A are also the eigenstates of

an operator associated with A, and Eq. 28 is said to give |ψ〉 as a linear

combination of the eigenstates of A.

Usually an equation has so many names because it is important, and it

has been examined from several points of view. Eq. 28 is central to quantum

mechanics. It is used to prove many important relations, to represent the

state of the system in ways that illuminate the system’s physical properties,

and to set up numerical calculations of |ψ〉. In all these applications it is

assumed that we know how to determine the pure states |an〉 and |α〉 and

how to perform calculations with them. You will learn later how to do that.

I warn you again that in the presentation made so far, the resolution of

identity (Eq. 27) and its consequence Eq. 28 have a false generality. If their

use is not augmented with common sense and watchful care, it can lead to

absurd conclusions or meaningless calculations. Later in this section I will

use examples that illustrate the traps one can fall in and show that numerical

analysis is a combination of art and analysis and that common sense plays a

role in any numerical recipe.

§ 8 A hint of how we might use Eq. 28. In most experiments in quantum
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mechanics, we expose a system to external agents that will change its prop-

erties. When the external action stops, the system is left in a state denoted

by |ψ〉. To analyze the results of the experiment, we use the time-dependent

Schrödinger equation, which includes the effect of the external agents, to

calculate |ψ〉. In all but the simplest cases, such a calculation is performed

on a computer. Computers cannot operate with abstract symbols like kets;

they only crunch numbers. To use a computer, we must find a numerical

expression for |ψ〉. This is what Eq. 28 does for us: it expresses the unknown

ket |ψ〉 in terms of the known kets |an〉 and |α〉 and the unknown numbers

〈an |ψ〉 and 〈α |ψ〉.
Finding a usable expression for |ψ〉 means calculating the numbers 〈an |ψ〉

and 〈α |ψ〉. One way to do this is to put the expression (Eq. 28) for |ψ〉 into

the Schrödinger equation for |ψ〉. This gives equations, for the numbers

〈an |ψ〉 and 〈α |ψ〉, that can be solved by using a computer.

There are some interesting details in the implementation of this idea,

which you will learn later. This outline is only telling you why we are so

interested in various ways of representing unknown kets. It also highlights

the key role played by the pure states of an observable and alerts you to the

fact that if we are to make progress we will have to learn how to calculate

these pure states.

Note that due to these manipulations the abstract ket |ψ〉 is completely

defined once we know the sequence 〈an |ψ〉 with n = 1, 2, . . . and the func-

tions 〈αn |ψ〉. In addition if the state |ψ〉 describes a bound system (e.g.

an atom or a molecule), it is likely that the coefficients 〈αn |ψ〉 are small

and their contribution in the representation of |ψ〉 is negligible. This hap-
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pens because the states |α〉 correspond to the continuous spectrum and such

states extend over very large regions of space. Therefore in Eq. 28 we would

have a very localized state in the left-hand side and spatially extended states

in the right-hand side. It appears that to reconcile the two terms in this

equality the coefficients 〈αn |ψ〉 should be zero. This is a fine argument but

it is not always correct. You will see later examples where we do represent

localized states in terms of delocalized ones. However, in a large number of

cases the contribution from the continuous states can be neglected and the

representation of ψ reduces to

|ψ〉 '
∞
∑

n=1

|an〉 〈an |ψ〉 (29)

It is easy to show that if |ψ〉 is a bound state, the sequence

{〈a1 |ψ〉, 〈a2 |ψ〉, . . .} ≡ {〈an |ψ〉}∞n=1

belongs to the space `
2 described in Chapter 1. The resolution of identity

allows us to make a one-to-one connection between the elements of the ab-

stract space of kets and the elements of the space `
2. In Heisenberg versions

of quantum mechanics, the state of a system was represented by elements of

`
2 while in the Dirac formulation it was represented by a ket. We see now

that these two representations are equivalent. The element of `
2 representing

a given ket |ψ〉 depends on the states |an〉 chosen to represent Î . For any

such choice there is a specific `
2 space representing the ket.

I realize that this chameleon-like behavior of quantum theory is likely to

cause anxiety. However, this is not that unusual in physics. Classical me-

chanics has also been formulated in a variety of ways, and we have Newton’s

equation, Hamilton’s equations, Lagrange’s equations, Hamilton’s variational
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principle, Hamilton-Jacobi equations, and whole set of canonical transforma-

tion that can make the same theory appear very different. The same situation

appears in electrodynamics where various gauges can be used. The only dif-

ference is that in quantum mechanics, there were three versions of the theory

and for a short while people did not know why they all gave correct results.

§ 9 The energy representation. We can use in Eq. 28 the pure states of any

observable. However, not all pure states are equal and among them the pure

states |En〉 of the energy are very popular. The main reason is that their

time evolution is very easy to calculate.

If we use these states in Eq. 28 we obtain for |ψ〉 the expression

|ψ〉 =
∞
∑

n=1

|En〉〈En |ψ〉 +
∫ ∞

0

dα |Eα〉〈Eα |ψ〉 (30)

I included the integral because the energy spectrum has continuous values,

which represent states in which the energy is so high that the system breaks

up into fragments. The numbers 〈En |ψ〉 have a physical meaning. The prob-

ability that a system in state |ψ〉 has the energy En is Pψ(En) = |〈En|ψ〉|2.

§ 10 The coordinate representation. The coordinate representation also

plays a fundamental role because it connects the abstract Dirac theory to the

one proposed by Schrödinger.

The completeness relation for the pure states of the position is (see Eq. 22)

Î =
∫ +∞

−∞
dx |x〉〈x| (31)

Here |x〉 is a state in which we know with certainty that the particle is located

at x. There is no sum over a discrete spectrum because position has only a

continuous spectrum.
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This equation has many important uses, most of them based on the fact

that

ψ(x) ≡ 〈x |ψ〉

is the Schrödinger wave function of a system in state |ψ〉. The Schrödinger

wave function satisfies the differential Schrödinger equation, which we can

solve. Thus we can obtain explicit expressions for ψ(x) ≡ 〈x |ψ〉 and use

them in further calculations.

Let us apply the bra 〈x| to Eq. 30, which gives the expression of |ψ〉 in

energy representation. We obtain

〈x|ψ〉 =
∞
∑

n=1

〈x|En〉〈En |ψ〉 +
∫ ∞

0

dα 〈x|Eα〉〈Eα |ψ〉 (32)

In the Schrödinger notation the expression 〈x|En〉 is written as φEn
(x) and

the latter symbol is the wave function of a system that has the energy En

and the position x. The symbol φ has no physical meaning and it is not

necessary, but the usage of having a letter such as φ or ψ is deeply ingrained.

Like most bad habits it is easier to live with it than to try to change it. Since

〈En |x〉 = 〈x |En〉∗ we have 〈En |x〉 = φEn
(x)∗. With this notation Eq. 32

becomes

ψ(x) =
∞
∑

n=1

φEn
(x)〈En |ψ〉 +

∫ ∞

0

dαφEα
(x)〈Eα |ψ〉 (33)

The scalar product 〈En |ψ〉 can be written as

〈En |ψ〉 = 〈En | Îψ〉 =
∫ +∞

−∞
dx 〈En |x〉 〈x |ψ〉 =

∫ +∞

−∞
dx 〈x |En〉∗ 〈x |ψ〉

=
∫ +∞

−∞
φEn

(x)∗ ψ(x) dx (34)

In the manipulations made above I used Eq. 22, which is the completeness

relation in terms of pure states of position. This procedure for calculating
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the scalar product by using the coordinate representation is general. For two

arbitrary kets |ψ〉 and |φ〉 we have

〈φ |ψ〉 =
∫ +∞

−∞
〈φ |x〉〈x |ψ〉dx =

∫ +∞

−∞
φ(x)∗ψ(x) dx (35)

This is the formula for the scalar product used in Schrödinger’s version of

quantum theory. If we solve the Schrödinger equation to obtain the wave

functions φ(x) and ψ(x), we can use Eq. 34 to calculate the scalar product

〈En |ψ〉 which in turn can be used to calculate the probability that the system

has the energy En. If the system is 30-dimensional (ten particles moving in

three-dimensional space) then the equations presented here (valid for one

particle moving in one dimension) will contain 30 integrals, one for each

coordinate.

§ 11 An example of using the energy and coordinate representations. The

energy of the particle in a box is an observable with a discrete spectrum and

therefore the pure states of energy |en〉 satisfy the completeness relation

∞
∑

n=1

|en〉 〈en| = Î (36)

Denote the pure states of the energy of a harmonic oscillator by |Em〉, m ≥ 0.

Using Eq. 36 I can write

|Em〉 = Î |Em〉 =
∞
∑

n=1

|en〉 〈en |Em〉 (37)

I want to use numerical calculations to test this equation and explore more

deeply its meaning and limitations. Testing how well this expansion works

(if at all) is equivalent to testing the completeness relation Eq. 36.
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I have warned you that the completeness relation written in terms of bras

and kets appears more general than it is and should be used with care. You

will see here an example that explains what I mean.

I will work with a system consisting of particle confined to move within a

box of length L, whose walls are located at x = 0 and x = L. The harmonic

oscillator vibrates around a position x0. The kets |en〉 and |Em〉 tell us the

energy of the states but give no position information. The state | en〉 does

not tell us where the box is located and how wide it is. The state |En〉
does not tell us the point around which the oscillator vibrates. This missing

information is very important: if the box is in London and the oscillator is in

New York, we cannot express the wave function of one as a linear combination

of the wave functions of the other; the wave function of the particle in a box

is zero outside London and that of the oscillator is zero outside New York.

To construct the linear combination used in Eq. 28, we must pay attention

to the position of the particle in the oscillator and that of the particle in the

box. How do we do that?

We know the pure states of the harmonic oscillator and of the particle

in a box in the coordinate representation (Schrödinger representation). You

can find them in any introductory book on quantum mechanics. So let us

act on Eq. 37 with the bra 〈x| to introduce the position into this equation:

〈x |Em〉 =
∞
∑

n=1

〈x | en〉 〈en |Em〉 (38)

Here x is the location of the particle and 〈x | en〉 is the wave function of the

particle in a box of length L. If you look in an introductory book you will
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find that

〈x | en〉 =











√

2

L
sin

(

nπx
L

)

, n = 1, 2, 3, . . . if x ∈ [0, L]

0 if x 6∈ [0, L]
(39)

This expression is valid for a box whose walls are located at x = 0 and x = L

(see Metiu, Quantum Mechanics, Eq. 8.25, page 103). Moreover, 〈x |Em〉 is

the wave function of a harmonic oscillator that has the energy Em.

If we use Eq. 39 in Eq. 38, we obtain

〈x |Em〉 =











∑∞
n=1

√

2

L
sin

(

nπx
L

)

〈en |Em〉 if x ∈ [0, L]

0 if x 6∈ [0, L]
(40)

If we assume that we don’t know the wave function 〈x |Em〉 then we do not

know the complex numbers 〈en |En〉. We can calculate them by forcing Eq. 38

to satisfy the Schrödinger equation for the harmonic oscillator. This will give

us equations for the scalar products 〈en |En〉. If we solve those equations,

we can use the results for 〈en |En〉 in Eq. 38 and obtain the wave function

of the harmonic oscillator. We are going to use this method in a future

chapter where numerical procedures for solving the Schrödinger equation are

presented. Here we have a more modest goal: we want to test the expansion

Eq. 38, which is equivalent to testing the completeness relation. The example

will show that the abstract completeness equation Î =
∑∞
n=1 |en〉 〈en| could

be very misleading if it is not used with care.

§ 12 Trouble ahead. As a result of the formal manipulations used in this

chapter, we have written the wave function 〈x |Em〉 of a harmonic oscillator

as a sum of wave functions 〈x | en〉 of the particle in a box. Writing the
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L’/2
L’0

λ

L/2 L0

λ

(a) (b)

Figure 1: The oscillator ground-state wave function 〈x |E0〉 (a) in a box of

width L and (b) in a smaller box, of width L′

expansion in coordinate representation makes it easy to see the limitations

of the formal expansion
∑

n |en〉 〈en| = Î . If you examine the wave function

〈x |Em〉 of a harmonic oscillator you will find that it is different from zero in

the region x ∈ [x0−3λ, x0 +3λ] where λ =
√

h̄/mω is a length characterizing

the oscillator (m is the mass and ω is the frequency). The particle-in-a-box

wave function 〈x | en〉 differs from zero only if x ∈ [0, L]. Eq. 38 can be

correct only if the region x ∈ [x0 − 3λ, x0 +3λ] is inside the region x ∈ [0, L].

The amplitude of the oscillator must be contained inside the box. To satisfy

this condition, we place the position x0 (around which the particle oscillates)

in the middle of the box. Moreover, we must ensure that the box is large

enough to accommodate the wave function of the oscillator. This means that

we must have:

x0 = L/2 (41)
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and

L > 2 × 3λ (42)

The box-size L must be larger than the largest amplitude the oscillator can

have. The graph of 〈x |E0〉 and that of the box are shown in Fig. 1 for two

boxes of lengths L and L′. Both boxes are large enough to contain the wave

function of the ground state of the oscillator (the bell-shaped curve). We will

see later that if we are interested only in the ground state of the oscillator

then the box in Fig. 1(b) is the best choice. However that would not be a

good choice if we want to represent the excited states of the oscillator because

they would be wider than the box and therefore the representation in terms

of particle-in-a-box wave function will never give a correct representation of

the oscillator wave function. On the other hand, if the box is too large (as in

Fig. 1(a)), we obtain an accurate representation only if we take a very large

number of terms in the sum.

The formal expansion

|Em〉 =
∞
∑

n=1

|en〉 〈En |Em〉 (43)

(based on the formal equation Î =
∑∞
n=1 |en〉 〈en|) gave no hint that such

conditions must be imposed. They become apparent only when we convert

this equation to the coordinate representation and give some thought to

what we are trying to do. This is why I warned you that a careless use of

the resolution of identity
∑

n |en〉 〈en| = Î can lead to absurd conclusions, not

just poor approximations.

As I alluded to earlier, the choice of L, for a given λ, is not without peril.

In principle, either box in Fig. 1 is an appropriate choice, but box (b) is
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better in practice. To see why I say that, take a look at Fig. 2, which shows

graphs of 〈x |E0〉, which is the function we want to represent, and of 〈x | en〉,
n = 1, 2, 3, which are the functions used in the representation (in the sum

in the right-hand side of Eq. 38). The wave function of the oscillator (for

the lowest energy), namely 〈x |E0〉, is the dark blue, bell-shaped curve. This

function is equal to zero when x ∈ [0, 0.1] and x ∈ [0.4, 0.5]. The other three

curves are the wave functions of the particle in the box 〈x | en〉, for n = 1, 2, 3.

None of these functions is zero in those regions of x in which the oscillator

wave function is zero. It would seem that we cannot represent 〈x |E0〉 in the

regions [0,0.1] and [0.4,0.5] as a sum of the functions 〈x | en〉. This is a false

impression. The expression
∑

n〈x | en〉 〈en |E0〉 can be equal to zero in these

ranges of x if some of the coefficients 〈en |E0〉 are negative and some are

positive, so that the terms in the sum cancel each other when x ∈ [0, 0.1] or

x ∈ [0.4, 0.5]. This may not seem likely, but it happens. We will revisit this

situation soon. We will refer to this cancellation as destructive interference

between the wave functions of the particle in the box.

Now let us go back to the two boxes in Fig. 1. The region of values of x

over which the sum must equal zero is larger for the box at the left, and the

cancellation by destructive interference is harder to achieve than in the case

of the smaller box (at the right of Fig. 1). If we use the box having a larger

value of L, we will need more terms to represent 〈x |E0〉 than when we use

the box of length L′ < L. On the other hand the choice of the larger length

is necessary if we want to represent well the excited states of the oscillator,

since in these states the oscillator has higher energy and travels further than

in the ground state.
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Figure 2: The blue curve is the ground state wave function 〈x |E0〉 of the

harmonic oscillator. Purple: 〈x | e1〉; yellow: 〈x | e2〉; green: 〈x | e3〉. I used

L = 0.5 Å and λ = 0.042 Å.

All these statements are based on common sense: they do not involve

mathematical sophistication but require careful and practical thinking. They

also display why one cannot use the completeness relation mechanically. Nu-

merical analysis is not a field suitable for impractical people who rely solely

on logic, especially when the logic is used without the necessary rigor.

§ 13 A test of the representation theory. Now that we understand what

we are up against, let us test Eq. 38. The wave function of the harmonic

oscillator is given by (see Metiu, Quantum Mechanics, Eqs. 17.8–17.11, pages

272–273)

〈x |Em〉 =

√

1

λ

(

1

π1/4
√

2mm!

)

exp

[

−(x− x0)
2

2λ2

]

Hm

(

x− x0

λ

)

, m = 0, 1, 2, . . .

(44)
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with

λ =

√

h̄

µω
(45)

and

x0 =
L

2
(46)

Hm(x) is the Hermite polynomial of order m, and λ is a length.

The test of Eq. 38, for m = 0, proceeds as follows:

1. Calculate 〈en |E0〉 by using

〈en |E0〉 =
∫ +∞

−∞
〈en |x〉 〈x |E0〉 dx (47)

2. Test whether the right-hand side of Eq. 38 is equal to the left-hand side

(which is given by Eqs. 44–46), by plotting them on the same graph.

Using Eq. 39 for 〈en |x〉 and Eq. 44 for 〈x |E0〉, we evaluate 〈en |E0〉 by

performing the integral in Eq. 47. Mathematicagives (see WorkBook3 Representation

theory.nb)

〈en |E0〉 = − i

2
exp

[

−nπ(iL2 + nπλ2)

2L2

]

(

−1 + einπ
)

π1/4

√

λ

L

×
(

Erf

[

L2 − 2inπλ2

2
√

2Lλ

]

+ Erf

[

L2 + 2inπλ2

2
√

2Lλ

])

(48)

This looks very complicated, but it poses no serious problems if we use a

computer. The Erf function is calculated by Mathematica automatically

when the argument is a number. This result for 〈en |E0〉 seems to be a

complex number but this is not: n is an integer, so 〈en |E0〉, given by Eq. 48,

is a real number. Here are the values of 〈en |E0〉 for L = 0.5 and n =

1, 2, . . . , 10 (see WorkBook3 Representation theory.nb):

0.7453, 0, −0.5641, 0, 0.3232, 0, −0.1401, 0, 0.04568, 0
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That is, 〈e1 |E0〉 = 0.7453, 〈e2 |E0〉 = 0, and so on. The fact that the

coefficients get smaller and smaller is a good sign: it signals that the sum in

Eq. 38 seems to be convergent.

Now that I have the coefficients 〈en |E0〉, I can write Eq. 38, for x ∈ [0, L],

as

〈x |E0〉 =
∞
∑

n=1

√

2

L
sin

(

nπx

L

)(

− i

2

)

exp

[

−nπ(iL2 + nπλ2)

2L2

]

(

−1 + einπ
)

×π1/4

√

λ

L

(

Erf

[

L2 − 2inπλ2

2
√

2Lλ

]

+ Erf

[

L2 + 2inπλ2

2
√

2Lλ

])

(49)

No one would ever write down this equation by accident or by pure contem-

plation. If it is correct then there is something deep about the completeness

relation.2

The formal theory developed here tells us that we should take an infinite

number of terms in our representation. Of course, no computer can handle

that. In practice we can take only a finite number of terms. One of the most

important questions in such representations is how many terms do we need

and how do we know when we have enough of them? In Fig. 3, I compare the

sum of the first twenty terms in Eq. 49 with the ground state wave function of

2Those of you who know mathematics will recognize this expression as a truncated

Fourier series, discovered by Jean Baptiste Joseph Fourier in 1822. We arrived at this result

by using physical arguments about probability in quantum mechanics (to “derive” the

completeness relation) and the fact that the energy of a particle in a box is an observable.

Before getting too pleased with ourselves, we need to remember that our manipulations

do not make a mathematical proof. We did not examine convergence, nor did we establish

clearly what kind of functions can be expressed as a sum of sine functions. Nevertheless our

“derivation” is a remarkably quick (if “dirty”) way of suggesting interesting mathematical

connections.
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Figure 3: The harmonic oscillator ground state wave function is shown as a

dashed blue line. The sum representing it, with 20 terms, is shown as a solid

red line. L = 0.5 Å, λ = 0.042 Å. The plot was made in Section I, Cell 5 of

WorkBook3 Representation theory.nb.

the harmonic oscillator. Obviously the representation of 〈x |E0〉 by the sum

is excellent. But what happens if we take only three terms? The outcome

is shown in Fig. 4. It is not a good fit. The peak in the middle is not well

developed and the functions in the sum do not cancel each other at the edges

of the interval.

When I chose the parameters, I took L = 0.5 Å and λ = 0.042 Å. In

Fig. 2 you can see that the box is much wider than the region where the

oscillator wave function differs from zero. It seems that I might do better if

I take instead L = 0.4 Å, to narrow the box. You can see from Fig. 5 that

this is the case.
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Figure 4: The solid red line is the sum in Eq. 49 with three terms. The

dashed blue line is the ground state wave function of the harmonic oscil-

lator. L = 0.5 Å, λ = 0.042 Å. The plot was made in Cell 5 of Work-

Book3 Representation theory.nb.
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Figure 5: The left panel shows the ground state harmonic oscillator wave

function (dashed, blue) and the six-term sum (solid, red), taken with L =

0.4 Å. The right panel shows the result when L = 0.5 Åand the same number

of terms in the sum. A small box, but not too small, is better than a large

one.



3. Completeness and representations, December 29, 2014 27

§ 14 A few general remarks. We have talked about the space of kets in

general, but now we emphasize again that the pure states of different systems

generate different spaces. The space generated by the pure states of the

energy of a particle in a box of length L is different from that generated by

the states for a box of length L′ 6= L. The pure energy states of a particle in

a box whose walls are located at x = −L/2 and x = L/2 generate a different

space than do the states of a particle in the same-size box with walls at x = 0

and x = L.

Exercise 1 |en〉 are the pure states of the energy for a particle in a box of

length L = 0.5 Å whose walls are located at x = 0 and x = 0.5. |εn〉 are the

pure states of the energy for a particle in a box of length 0.4 Å with walls

located at x = 0 and x = 0.4. Formally, we have

∞
∑

n=1

|en〉 〈en| = Î (50)

and
∞
∑

n=1

|εn〉 〈εn| = Î (51)

(a) I can formally write

|em〉 =
∞
∑

n=1

|εn〉 〈εn | em〉 (52)

and

|εm〉 =
∞
∑

n=1

|en〉 〈en | εm〉 (53)

Are these equations correct?

(b) Check whether the right-hand side of

〈x | ε1〉 ∼=
N
∑

n=1

〈x | en〉 〈en | ε1〉 (54)
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gives a good approximation to the left-hand side. What do you have to say

about

〈x | e1〉 ∼=
N
∑

n=1

〈x | εn〉 〈εn | e1〉 ? (55)

Exercise 2 Represent the first excited state of a harmonic oscillator as a

sum of eigenfunctions of the particle in a box.

The danger of using the completeness relation with blind faith is illus-

trated dramatically when we consider the spin states of one electron. There

are only two of them, denoted by | ↑〉 and | ↓〉. The completeness relation

they generate is

Î = | ↑〉 〈↑ | + | ↓〉 〈↓ | (56)

It would be idiotic to write

|En〉 = Î |En〉 = | ↑〉〈↑ |En〉 + | ↓〉〈↓ |En〉

if |En〉 is a pure energy state of a particle in a box. The kets |En〉 belong to

a different space than do | ↑〉 and | ↓〉. However, if I perform an electron-spin

resonance (ESR) experiment with an organic radical that has one electron

with unpaired spin (e.g. CH3), then I can write any spin state |ψ〉 created by

the experiment as

|ψ〉 = | ↑〉〈↑ |ψ〉 + | ↓〉〈↓ |ψ〉 (57)

The state |ψ〉 of the spin of one electron in a molecule belongs to the space

generated by the set {| ↑〉, | ↓〉}.



3. Completeness and representations, December 29, 2014 29

Section 3.3. Generalization: Basis Set

§ 15 Summary. The main result of the previous section is that a ket |ψ〉
describing the state of a bound quantum system can be expanded as

|ψ〉 ∼=
N
∑

n=1

|an〉 〈an |ψ〉 (58)

This follows from the completeness relation

Î ∼=
N
∑

n=1

|an〉 〈an| (59)

The “proof” of the completeness relation made use of the fact that the kets

|an〉 are pure states of an observable. Note, however, that the validity of the

representation Eq. 58 depends only on the validity of the relation Eq. 59.

We may ask therefore whether it is possible to construct an orthonormal set

of kets that satisfy the completeness relation but are not pure states of an

observable?

An equivalent question can be posed within the Schrödinger representa-

tion, where Eq. 58 becomes

ψ(x) ∼=
N
∑

n=1

cnan(x) (60)

with ψ(x) ≡ 〈x |ψ〉, an(x) ≡ 〈x | an〉, and cn ≡ 〈an |ψ〉. Can we find an

orthonormal set of functions an(x) such that the wave function ψ(x) is repre-

sented well by Eq. 60? If the answer is affirmative (and it is), can we use this

representation in the same way as the one based on expansion in pure states?

This would give us more flexibility in solving numerically the equations of

quantum mechanics.

In what follows, we show how such a set can be constructed.
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§ 16 A simple example of a basis set. You encountered the concept of basis

set when you studied vector algebra. Much of what you learn about abstract

linear spaces is a generalization of results obtained in the linear space of the

three-dimensional vectors (which we call R
3). This is why I review the use of

a basis set in this simple linear space. When you studied three-dimensional

vectors you showed that any three-dimensional vector ~r can be written as

~r = α1~e1 + α2~e2 + α3~e3 (61)

The three vectors ~e1, ~e2, ~e3 have unit length, and are oriented along the

axes of coordinates (see Fig. 6). This means that they are perpendicular to

each other. We say that the set of vectors {~e1, ~e2, ~e3} generates the space

R
3 or that it is a complete orthonormal basis set in R

3. Because the basis

set is orthonormal ~ei · ~ej = 0 if i 6= j (orthogonality) and ~ei · ~ei = 1 (unit

length). Here the dot product ~ei · ~ej is the scalar product in R
3. Eq. 60 is a

generalization of Eq. 61 to the linear space of functions.

§ 17 Gram-Schmidt orthogonalization. The basis set ~e1, ~e2, ~e3 in R
3, given in

§16, is easy to understand. In particular, we have no difficulty in picking the

vectors ~e1, ~e2, ~e3 so that they are perpendicular to each other (orthogonal)

and have unit length (normalized). The construction of an orthonormal basis

set is not as simple in a more general space such as L
2 or `

2. In what follows

I will show you a general scheme, called Gram-Schmidt orthogonalization,

that takes an arbitrary set of vectors in a general linear space and converts

them into a new set whose vectors are orthonormal.

In terms of kets, the task is to start with a set {|o1〉, |o2〉, . . . , |oN〉} and

generate a new set {|ν1〉, |ν2〉, . . . , |νN 〉} whose kets satisfy the orthonormality
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Figure 6: An orthonormal basis in R
3

relation

〈νi | νj〉 = δij, i, j = 1, 2, . . . , N (62)

Here is the algorithm that does that.

|n1〉 = |o1〉 (63)

|n2〉 = |o2〉 − |n1〉
〈n1 | o2〉
〈n1 |n1〉

=

[

Î − |n1〉 〈n1|
〈n1 |n1〉

]

|o2〉 (64)

|n3〉 = |o3〉 − |n1〉
〈n1 | o3〉
〈n1 |n1〉

− |n2〉
〈n2 | o3〉
〈n2 |n2〉

(65)

Or, in general

|nj〉 =



Î −
j−1
∑

i=1

|ni〉 〈ni|
〈ni |ni〉



 |oj〉, j = 1, 2, . . . , N (66)

You can verify by direct calculation that

〈ni |nj〉 = 0 for i 6= j; (67)



3. Completeness and representations, December 29, 2014 32

that is, the set {|n1〉, |n2〉, . . . , |nN〉} is orthogonal. For example,

〈n1 |n2〉 = 〈n1 | o2〉 −
〈n1 |n1〉 〈n1 | o2〉

〈n1 |n1〉
= 0

It is also easy to see that the kets

|νi〉 ≡
|ni〉

√

〈ni |ni〉
(68)

satisfy

〈νi | νj〉 = δij (69)

The set {|ν1〉, |ν2〉, . . . , |νN〉} is orthonormal!

§ 18 An example: constructing an orthonormal basis set in R
3. The calcu-

lations are performed with Mathematica (they could be done “by hand” but

this is tedious) and you should read Section II, Cell 1 of WorkBook3. Here I

give a summary of the results. I used a random number generator to create

three vectors in R
3:

|o1〉 = {0.445,−0.781,−0.059} (70)

|o2〉 = {0.071, 0.166,−0.412} (71)

|o3〉 = {−0.670,−0.202, 0.508} (72)

I use here the ket notation instead of the customary ~o1, etc.

The scalar product in R
3 is the dot product. I calculated 〈oi | oj〉 (the dot

product of |oi〉 with |oj〉) and found that these vectors are not orthonormal.

I use the Gram-Schmidt procedure to convert them to a set {|n1〉, |n2〉, |n3〉}
of vectors that are perpendicular to each other. The first step in the Gram-

Schmidt procedure is

|n1〉 = |o1〉 = {0.445,−0.781,−0.059} (73)
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The second vector (supposed to be orthogonal to the first) is

|n2〉 = |o2〉 −
|o1〉

〈o1 | o1〉
〈n1 | o2〉 (74)

Mathematica easily evaluates the right-hand side, to give

|n2〉 = {0.112, 0.095,−0.417} (75)

The third vector, |n3〉, is given by Eq. 65. Mathematica evaluates that to

|n3〉 = {−0.251,−0.135,−0.098} (76)

Next I tested that 〈ni |nj〉 = 0 if i 6= j. That turns out to be true,

which means that Gram-Schmidt does the job it promised. Then I used the

formula 〈νi〉 = |ni〉√
〈ni |ni〉

to create the normalized vectors |ν1〉, |ν2〉, |ν3〉, out

of |n1〉, |n2〉, |n3〉.
The Gram-Schmidt procedure has a simple geometric interpretation. We

can think of |o2〉 as having two components, one parallel to |n1〉 and one

perpendicular to it. The component parallel to |n1〉 has the form α|n1〉,
where α is an unknown number. To find the component perpendicular to

|n1〉, which is

|n2〉 = |o2〉 − α|n1〉, (77)

we just remove the part that is along |n1〉. The perpendicularity condition

allows us to determine α:

0 = 〈n1 |n2〉 = 〈n1 | (|o2〉 − α|n1〉)〉 = 〈n1 | o2〉 − α〈n1 |n1〉 (78)

Rearranging this equation we find

α =
〈n1 | o2〉
〈n1 |n1〉

(79)
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Inserting this value in Eq. 77 leads to the Gram-Schmidt formula Eq. 64.

Exercise 3 Use a similar geometric argument to derive Eq. 65.

§ 19 If the original vectors are linearly dependent. When developing a

basis set, we must be careful that none of the basis-set vectors (or kets, in

general) depends on the others. To explain what is involved I use the space

of three-dimensional vectors as an example. If the basis set is {|o1〉, |o2〉, |o3〉}
(I use the ket notation instead of the conventional one), we do not want to

have

|o3〉 = a|o1〉 + b|o2〉 (80)

It is intuitively clear that such a relationship causes a problem. If |o1〉 is

along the x-axis and |o2〉 is along the y-axis then |o1〉, |o2〉, and |o3〉 lie in

the XOY plane. These three vectors provide a basis set only for the vectors

lying in the XOY plane. In addition, a basis set for the vectors lying in the

XOY plane should have only two vectors; the third is superfluous.

When we have a relationship like Eq. 80, we say that |o3〉 is linearly

dependent on |o1〉 and |o2〉. The question is how the Gram-Schmidt procedure

will behave when there is such a linear dependence among the set of vectors

that we start with?

In Cell 1 of Section II of WorkBook3, I applied the Gram-Schmidt pro-

cedure to the set

|o1〉 = {0.445,−0.781,−0.059} (81)
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|o2〉 = {0.071, 0.166,−0.412} (82)

|o3〉 = a|o1〉 + b|o2〉 (83)

where a and b are unknown numbers. In this set, |o3〉 is linearly dependent

on |o1〉 and |o2〉.
The result of the calculations is

|n1〉 = |o1〉 = {0.445,−0.781,−0.059} (84)

|n2〉 = {0.112, 0.095,−0.417} (85)

|n3〉 = 0 (86)

The Gram-Schmidt procedure “knows” that there is something wrong with

|o3〉 and makes |n3〉 = 0. If you examine the algorithm closely you will see

that this behavior is general. If a vector |ok〉 can be expressed in the form

|ok〉 =
k−1
∑

j=1

αj |oj〉

then one of the “new” vectors, generated by the Gram-Schmidt procedure,

will be equal to zero.

This behavior makes perfect sense. If |o1〉 is along OX and |o2〉 is along

OY, then |o3〉 = a|o1〉 + b|o2〉 is contained in the XOY plane. The Gram-

Schmidt procedure calculates two vectors perpendicular to each other and

contained in the XOY plane and attempts to combine the “old” vectors to

make a vector perpendicular to XOY. However, the only such vector that can

be constructed from the starting vectors (which are on in the XOY plane) is

the vector equal to zero.

The moral: none of the n vectors in the starting set {|o1〉, |o2〉, . . . , |oN 〉}
should be linearly dependent on the others. If one of them is, then the Gram-
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Schmidt procedure will create an orthonormal basis set of n-1 vectors and

produce a vector equal to zero

§ 20 An example of constructing an orthonormal basis set in L
2. The

Gram-Schmidt procedure is very general and it can be applied to any linear

space. For illustration I construct an orthonormal basis set for the space of

the functions f(x), x ∈ [0, π] that are differentiable and satisfy

∫ π

0

f(x)2 dx <∞ (87)

This space can be used to describe the wave function of a particle whose

position is confined (by the forces acting on it) between x = 0 and x = π.

The wave functions of a particle in a box having infinite walls at x = 0 and

x = π are contained in this L
2 space, as are the wave functions of a harmonic

oscillator vibrating around x = π/2 whose maximum amplitude is smaller

than π/2. More important is the fact that basis sets are essential to most

methods for numerical solution of the Schrödinger equation. For ambitious

calculations a good basis set is essential since it controls both the quality of

the results and the amount of computer power required.

I define the scalar product to be

〈f |φ〉 =
∫ π

0

f(x)φ(x) dx (88)

For simplicity, I restrict the space to contain only functions taking real values.

I start with the “old” functions

〈x | oi〉 ≡ oi(x) = xi−1, i = 1, . . . , N (89)
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If I use these functions as a basis set, I would write, for any function |f〉
in the linear space,

|f〉 =
N
∑

i=1

αi|oi〉 (90)

where αi are real numbers. In Schrödinger representation, this means

〈x | f〉 ≡ f(x) =
N
∑

i=1

αi〈x | oi〉 =
N
∑

i=1

αioi(x) =
N
∑

i=1

αix
i−1 (91)

We are attempting to fit the function f(x) with a sum of specially constructed

polynomials. There are many methods in numerical analysis for fitting a

function with a polynomial. Here I am using the Gram-Schmidt method to

illustrate how it works. It will turn out that the polynomials generated this

way provide a better representation than the one obtained by performing

a Taylor expansion of the function (which also represents the function as a

polynomial).

The set {oi(x)}Ni=1 is not orthonormal. Let us start with it and construct

an orthonormal set {ni(x)}Ni=1. The simple calculations needed for this are

performed in Section II, Cell 2, of the Mathematica file WorkBook3.nb.

Using Eq. 63,

|n1〉 = |o1〉

which means that

〈x |n1〉 = 〈x | o1〉 = 1 (92)

Using Eq. 64:

〈x |n2〉 = 〈x | o2〉 − 〈x |n1〉
〈n1 | o2〉
〈n1 |n1〉

(93)

with

〈n1 | o2〉 =
∫ π

0

〈n1 |x〉 〈x | o2〉dx
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=
∫ π

0

n1(x)o2(x) dx =
∫ π

0

1 × x dx = π2/2 (94)

〈n1 |n1〉 =
∫ π

0

〈n1 |x〉 〈x |n1〉dx

=
∫ π

0

n1(x)n1(x) dx =
∫ π

0

dx = π (95)

Using Eqs. 94 and 95 in Eq. 93 gives

n2(x) = o2(x) −
π

2
= x− π

2
(96)

The third function is (use Eq. 65 with j = 3)

〈x |n3〉 = o3(x) − 〈x |n1〉
〈n1 | o3〉
〈n1 |n1〉

− 〈x |n2〉
〈n2 | o3〉
〈n2 |n2〉

=
π2

6
− πx+ x2 (97)

Similarly, we obtain (see WorkBook3)

〈x |n4〉 ≡ n4(x) = −π
3

20
+

3π2

5
x− 3π

2
x2 + x3 (98)

We can go on and calculate as many “new” basis set functions (i.e. orthogonal

polynomials) as we need by following the recipe.

You can verify, by performing the integrals, that

〈ni |nj〉 =
∫ π

0

〈ni |x〉 〈x |nj〉dx =
∫ π

0

ni(x)nj(x) dx = 0 when i 6= j (99)

The “new” functions {ni(x)}Ni=1 are orthogonal. However, they are not nor-

malized. To normalize them we use (see Eq. 68)

νi(x) ≡
ni(x)

√

〈ni |ni〉
(100)

The result is (see WorkBook3)

ν1(x) =
1√
π

(101)
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ν2(x) = −
√

3

π
+

2
√

3

π3/2
x (102)

ν3(x) =

√

5

π
− 6

√
5

π3/2
x+

6
√

5

π5/2
x2 (103)

ν4(x) = −
√

7

π
+

12
√

7

π3/2
x− 30

√
7

π5/2
x2 +

20
√

7

π7/2
x3 (104)

Of course, you can go on and generate more functions. Here I wanted to

illustrate the method and give you a chance to see what the orthonormal

polynomials look like.

We can now expand any function in our L
2 space in terms of this or-

thonormal basis set. As an example, let us expand the function

〈x | f〉 ≡ f(x) ≡ x2 sin(x) (105)

The expansion is

|f〉 ∼=
m
∑

i=1

ai |νi〉 (106)

Acting with 〈νj | on Eq. 106 gives

〈νj | f〉 ∼=
m
∑

i=1

ai 〈νj | νi〉 =
m
∑

i=1

ai δji = aj (107)

It is in this equation that the orthonormality of the basis set plays a very

important role.

Exercise 4 Examine what would happen if the basis set was not orthogonal.

Explain why the calculations would be more difficult if that were the case.

If we introduce the expression 〈νi | f〉 = ai into Eq. 106, we have

|f〉 ∼=
m
∑

i=1

〈νi | f〉 |νi〉 =

(

m
∑

i=1

|νi〉 〈νi|
)

|f〉 (108)
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which implies that
m
∑

i=1

|νi〉 〈νi| ∼= Î (109)

where Î is the unit operator.

The assumption, that the orthonormal basis set {|νi〉}mi=1 provides a good

representation (through Eq. 106) of all the functions in the space, is equiva-

lent to assuming that the set satisfies the completeness relation, Eq. 109.

By acting with the bra 〈x| on Eqs. 106–108, we convert them to Schröd-

inger representation

〈x | f〉 ≡ x2 sin(x) ∼=
m
∑

i=1

ai〈x | νi〉 =
m
∑

i=1

aiνi(x) (110)

where (see Eq. 107)

ai = 〈νi | f〉 =
∫ π

0

〈νi |x〉 〈x | f〉dx =
∫ π

0

νi(x)x
2 sin(x) dx (111)

The second equality is based on our definition of the scalar product in this

space.

I can now test the theory by calculating ai from Eq. 111 and inserting the

result in Eq. 110. If the sum in Eq. 110 is nearly equal to 〈x | f〉 = x2 sin(x),

the theory is successfully tested.

§ 21 A fit of x2 sin(x), x ∈ [0, π], by orthogonal polynomials. The calcula-

tion that provides the fit (and tests its quality) has the following steps.

1. Assume that the representation given by Eq. 110 is plausible.

2. Calculate the coefficients an from Eq. 111, by using the polynomials

νi(x) given by Eqs. 101–104.
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3. Test whether the sum in Eq. 110 is a good approximation to f(x) =

〈x | f〉 = x2 sin(x).

0. 5 1. 0 1. 5 2. 0 2. 5 3. 0

1

2

3

4

0. 5 1. 0 1. 5 2. 0 2. 5 3. 0

1

2

3

4

(a) (b)

xx

Figure 7: (a) The solid, red curve is x2 sin(x) and the dashed, black curve is

its representation by a basis set of five orthonormal polynomials. (b) Same

as in (a) but with a basis set of ten polynomials. The plots were made in

Cell 3 of Section II or WorkBook3.nb.

In Section II, Cell 3, of WorkBook3, I calculated the coefficients an by

performing the integrals in Eq. 111. For example,

a3 =
∫ π

0

ν3(x)x
2 sin(x) dx

=
∫ π

0





√

5

π
− 6

√
5

π3/2
x+

6
√

5

π5/2
x2



 x2 sin(x) dx = −1.19836 (112)

The others are

a1 = 3.31157, a2 = 1.82699, and a4 = −1.2868 (113)

The expansion is therefore

x2 sin(x) ∼= ν1(x) + 3.31ν2(x) − 1.198ν3(x)− 1.29ν4(x) (114)
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with ν1(x), . . . , ν4(x) given by Eqs. 101–104. Using these equations in Eq. 114

gives

x2 sin(x) ∼= 0.49 − 3.31x + 4.92x2 − 1.24x3 (115)

In Fig. 7(a) I show the function x2 sin(x) together with the fit with m = 5 in

Eq. 110. The fit is respectable and it is much better when m = 10 (Fig. 7(b)).

§ 22 Is this expansion in orthonormal polynomials better than a power-series

expansion? Eq. 115 approximates x2 sin(x) with a polynomial. We could

have obtained a polynomial approximation for this function by using a Taylor-

series expansion. Unless the orthonormal-polynomial expansion is better

than a power-series expansion, we have wasted our time developing it. Here

we test the performance of two Taylor-series expansions against that obtained

by using orthonormal polynomials.

The Taylor-series expansion to fourth order around the point x = 0 is

f(x) ∼=
4
∑

k=0

1

k!

(

∂kf

∂xk

)

x=0

xk (116)

In the case of f(x) = x2 sin(x), this gives (see Cell 3 in Section II of Work-

Book3.nb)

x2 sin(x) ∼= x3 (117)

In Fig. 8a, I give plots (made in Cell 3 of Section II or WorkBook3) of

x2 sin(x), of its representation Eq. 115 by a sum of orthonormal polynomials,

and of the Taylor-series approximation Eq. 117. The Taylor-series expansion

does very well when x is near the expansion point x = 0 but is very bad

for larger x. The orthonormal-polynomial expansion of the same order does

better for all x except those very close to x = 0.
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Figure 8: (a) The third-order power-series expansion of x2 sin(x) around

x = 0 (in red), x2 sin(x) (in blue), and the polynomial expansion to third

order (in black, dashed). (b) Same as in (a) except that the power-series

expansion is around x = π/2.

Perhaps this is an unfair comparison since we took the expansion point

to be x = 0. A Taylor-series expansion around x = π/2 might do better. We

perform such an expansion in Cell 7.4 and the result is

x2 sin(x) ∼= 3.04 − 7.75x + 7.17x2 − 1.57x3 (118)

In Fig. 8b, I plot this approximation together with x2 sin(x) and the orthonormal-

polynomial expansion. The Taylor series does well for x around the expansion

point x = π/2 but is very inaccurate for other values of x.

The Taylor expansion uses only information about the function at the

expansion point. The orthonormal polynomial expansion uses information

in the whole range of values of x; this gives it an edge.
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Section 3.4. Non-orthogonal Basis Sets

§ 23 Introduction. In constructing orthonormal basis sets, we follow the

example of the space R
3 where the basis set {~e1, ~e2, ~e3}, described in §16,

was orthonormal. It turns out that this is not always the best choice when

dealing with more general spaces. The main purpose of a basis set |φi〉,
i = 1, 2, . . . , N , is to allow us to represent an arbitrary ket |ψ〉 in the form

|ψ〉 =
N
∑

i=1

ai|φi〉 (119)

where ai are complex numbers. This representation is used in practice to

solve the equation satisfied by |ψ〉. In the process of doing this, we must

evaluate a large number of scalar products involving |φi〉. In Schröding-

er representation this amounts to performing a large number of integrals

involving 〈x |φi〉. Thus, besides completeness (which means that Eq. 119 is

a good representation of |ψ〉), we have the practical requirement that these

integrals can be evaluated efficiently. It so happens that many basis sets

that satisfy this requirement are not orthonormal. Sometimes we may have

to give up orthonormality in favor of easy integrability.

Often the physics of the system suggests to us basis sets that are not

orthonormal but permit a convenient physical picture of the wave function.

One example is the molecular orbital theory of a diatomic molecule such as

H2. In that case, the molecular orbital is taken to be a linear combination of

atomic orbitals centered on the two atoms. The atomic orbitals are the basis

set and they are not orthogonal.

It is therefore important to understand the main issues involved in con-

structing non-orthogonal basis sets. This is the purpose of this section.
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§ 24 Linear independence. Again we look to R
3 for inspiration. It is clearly

possible to write any vector in terms of three arbitrary vectors, ~a1, ~a2, ~a3,

even if they are not orthogonal:

~v = α1~a1 + α2~a2 + α3~a3

as long as the three vectors ~ai, i = 1, 2, 3 are not co-planar (i.e. not contained

in the same plane). It is this injunction against co-planarity that we explore

here.

Let us assume that ~a1, ~a2, and ~a3 are in the same plane. There is no loss

of generality if we pick the coordinate system so that the OX and OY axes

are in this plane. It is immediately clear that the sum

α1~a1 + α2~a2 + α3~a3

cannot represent a vector that has a component in the OZ direction. This

means that the basis set is not complete in R
3, because it cannot represent

all the vectors of R
3. It can, however, represent all the vectors contained

in the XOY plane (i.e. vectors whose z-component is zero), which is an R
2

subspace of R
3. But this job can be achieved by any two vectors in the set

{~a1,~a2,~a3}, as long as they are not co-linear (i.e. they are not parallel). We

say that in the subspace R
2 the basis set {~a1,~a2,~a3} is overcomplete.

Representing the vectors ~η lying in the XOY plane as

~η = η1~a1 + η2~a2 + η3~a3 (120)

is wasteful and causes all kinds of trouble in applications. The waste comes

from the fact that we can write

~a3 = n1~a1 + n2~a2 (121)
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and therefore the third term in Eq. 120 is unnecessary.

This suggests that in a good basis set {|φi〉}Ni=1, we should be unable to

write any one of the elements as a linear combination of the others. This

means that the equality
N
∑

i=1

ni|φi〉 = 0 (122)

is possible only if all the coefficients ni are equal to zero. If that is true, we

say that the set {|φi〉}Ni=1 is linearly independent. If it is not true, we say

that the set is linearly dependent. Linearly dependent sets are not to be used

as basis sets! One way to think of a linearly independent set is that every

element gives us information that the others cannot. A linearly dependent

set contains one or more vectors that add no new information.

It is easy to derive a test for linear independence. Act with 〈φj | on

Eq. 122, to obtain
N
∑

i=1

ni〈φj |φi〉 = 0 (123)

We call the number

Sji ≡ 〈φj |φi〉 (124)

the overlap of |φj〉 with |φi〉. If Sji = 0, we say that the two kets |φi〉 and

|φj〉 do not overlap. If Sji 6= 0, the kets overlap. Note that orthogonal kets

do not overlap.

With this notation, we can write Eq. 123 as

N
∑

i=1

Sjini = 0 (125)

As j ranges from 1 to N , this constitutes a homogeneous system of equations

for the unknowns ni, which is equivalent to Eq. 123. We make use of the
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following theorem: if the determinant of the matrix (Sji) differs from zero,

det(Sij) 6= 0, (126)

then the only solution of Eq. 125 is

n1 = 0, n2 = 0, . . . , nN = 0

On the other hand, if

det(Sij) = 0, (127)

then Eq. 125 has non-zero solutions.

The system in Eq. 125 is equivalent to Eq. 123. We conclude that if

det(Sij) 6= 0 then the solution of
∑

i ni|φi〉 = 0 is n1 = · · · = nN = 0 and the

kets |φi〉 are linearly independent.

§ 25 An orthogonal basis set is always linearly independent. If a set

{|φi〉}Ni=1 is orthogonal then, by the definition of orthogonality, we have

Sij = 〈φi |φj〉 = 0 if i 6= j (128)

The system of equations Eq. 125 reduces to

S11n1 = 0

S22n2 = 0
...

SNNnN = 0

(129)

Each “self-overlap” Sii = 〈φi |φi〉 is nonzero and therefore n1 = 0, n2 = 0,

. . .nN = 0. The set is linearly independent.
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An example of linear dependence is provided by the set ~a1 = {1, 0, 0},
~a2 = {0, 1, 0}, ~a3 = {1, 1, 0}. Clearly

~a3 − ~a1 − ~a2 = 0,

showing linear dependence.

Also note that all three of these vectors are in the XOY plane: their

z-components are zero. Therefore we cannot use this basis to represent a

vector whose z-component is not zero. The set is not a complete basis in

R
3. If we regard it as a basis set in R

2, it is overcomplete. Any two of the

vectors will suffice for representing all vectors in the XOY plane; the third

one is superfluous.

§ 26 The disadvantages of non-orthogonal basis sets. We use a basis set

{|a1〉, |a2〉, . . . , |aN〉} to represent kets |v〉 by expressions

|v〉 =
N
∑

i=1

ci|ai〉 (130)

where the coefficients ci depend on |v〉. If we act with 〈aj| on this expression,

we obtain

〈aj | v〉 =
N
∑

i=1

ci〈aj | ai〉 =
N
∑

i=1

Sjici (131)

As before, Sji ≡ 〈aj | ai〉 are the elements of the overlap matrix. To calculate

the coefficients ci, we must evaluate 〈aj | v〉, calculate Sji, and then solve the

system of equations Eq. 131. It is here where we are hurt if the determinant

of the overlap matrix is zero: in such a case, the system does not have a

solution. In addition, if the determinant is very small, the solutions of the

system in Eq. 131 are likely to be inaccurate when determined by numerical

methods (which are the only methods available).
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Even if the determinant is robust, obtaining the coefficients ci from Eq. 131

is more difficult when the basis set is not orthonormal. If it is orthonormal

then

Sij = δij (132)

and Eq. 131 becomes

cj = 〈aj | v〉 (133)

so that the values of cj are easier to calculate.

§ 27 The advantages of non-orthogonal basis sets. Given all these troubles,

why would we want to use a non-orthogonal basis set? I answer with an

example: the molecular orbitals of the hydrogen molecule. We construct

them as a linear combination of atomic orbitals. For example, one of them

is

ψ(~r) =
1√
2
[1sA(~rA) + 1sB(~rB)] (134)

Here 1sA(~rA) are the 1s orbital of hydrogen atom A and ~rA is the vector

giving the position of the electron with respect to proton A (see Fig. 9).

1sB(~rB) has a similar meaning, for proton B.

+ +

A B

r
A r

B

Figure 9: The circles containing + signs represent protons; the closed circle

represents an electron.
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The motivation for this choice is simple. It is reasonable to assume that

1sA describes well the behavior of the electron when it is located near proton

A and away from proton B, and that 1sB performs a similar service in the

neighborhood of B. The linear combination should also represent well the

state of the electron in the region between nuclei. The sum in Eq. 134 is

presumably an acceptable representation of the electron state at all locations.

Here 1sA(~rA) and 1sB(~rB) were used as a basis set. These functions are

not orthogonal. When more accuracy is needed, we assume that

ψ(~r) = a11sA(~rA) + a21sB(~rB) + a32pxA(~rA) + a42pxB(~rB) (135)

This basis set is also non-orthogonal. When we construct a basis set, we try

to define it so that we need a small number of terms to represent the state

we are interested in. This is why the atomic orbitals were used. As a bonus,

this basis set has a physical meaning. However, when this representation

is used for calculating the energy and the wave function of a molecule, we

must perform many integrals involving the atomic orbitals. These integrals

are hard to evaluate. Because of this, modern quantum chemistry replaced

the atomic-orbital basis set with a set of Gaussian functions centered on the

atoms. This basis set is also non-orthogonal and the functions no longer have

a physical meaning. However, the integrals are much easier (i.e. faster) to

perform.

§ 28 Summary. We use basis sets for representing an unknown wave func-

tion ψ(x) as a linear combination

ψ(x) =
∑

n

anφn(x) (136)
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of the known functions φn(x).

Since ψ(x) is unknown, the coefficients an are unknown. We determine

them by introducing the representation into the Schrödinger equation for

ψ(x). Then we determine an so that ψ(x) given by Eq. 136 satisfies this

equation.

In practical terms, completeness means that the set {φn(x)}Nn=1 is flexible

enough to give a good fit to ψ(x). Since we don’t know ψ(x), we have to

guess the set {φn(x)}Nn=1 and this is not always easy. If we do not guess right,

ψ(x) does not satisfy the Schrödinger equation with sufficient precision. In

that case, we need to add more functions to the basis set or come up with a

more sensible set. In many situations, the set is not orthonormal. Then we

have a choice: use the Gram-Schmidt procedure to generate an orthonormal

set or work with the set as is.


