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Statistical Mechanics, Chapter 1: The Fundamental

Equations of Statistical Mechanics

1.1. Introductory Remarks

x1. Why do you need Statistical Mechanics? In previous lectures,

we used thermodynamics to study large systems, such as a gas or a liquid. To

develop the theory we introduced work, heat, energy, entropy, and formulated

the First and Second laws in terms of these quantities. Nowhere during this

development did we need to know that the system is made of molecules. We

invoked molecules occasionally, but their existence was never an essential

part of the discussion. During the period in which the greatest developments

in thermodynamics took place, some eminent physical chemists either denied

the existence of molecules or dismissed the idea as an unnecessary hypothesis.

However, we know that molecules exist and it is natural to ask how the

quantities introduced in thermodynamics depend on the properties of the

molecules. For example, it would be nice to have equations that allow us

to calculate the speci¯c heat or the equation of state, from the interactions

among the molecules and their vibrational and rotational energies.

What can we gain from such a theory? Perhaps, we can increase our un-

derstanding of thermodynamics in general, or of the thermodynamic prop-

erties of speci¯c systems. For example, at high temperatures the speci¯c

heat at constant volume Cv is equal to 3R=2 for all noble gases (R is the

gas constant). Why this number? Why are the noble gases di®erent from

other gases? Why does the heat capacity of a gas increase with the number

of atoms in its molecules? Why are the Cv values of certain diatomics such
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as H2 and HCl very similar and why do they di®er from those of I2 or Br2?

Thermodynamics cannot explain such similarities and di®erences. Statistical

Mechanics | which is a theory that connects the thermodynamic properties

of a body to the properties of the molecules in it | does.

Phenomenological thermodynamics introduces entropy in a very formal

way and gives no physical interpretation to this central quantity. In some

books, we are told that entropy is related to order: if a system is more

ordered, its entropy is smaller. Where does this statement come from? What

exactly is order? Why does entropy depend on it? Statistical Mechanics

manages to answer these questions.

When you studied chemical kinetics, you learned that a large number

of experiments established that most rate constants k satisfy the Arrhenius

equation k = A exp[¡Ea=RT ]. Here A is the so-called pre-exponential, Ea is
the activation energy, and R is the gas constant. Phenomenological chemical

kinetics cannot tell us why this functional form is so common, or the meaning

of the activation energy Ea or of the pre-exponential A. Nor can it tell us

how k is related to the motion of the atoms in a molecule or how the atoms in

a molecule move during a chemical reaction. Statistical Mechanics answers

these questions.

We have a natural desire to understand how the world around us works.

But, one could argue that a practical person can use thermodynamic data

without understanding why the values of certain quantities have some strik-

ing regularities, or why entropy and order are related. After all, thermody-

namics was a useful science before the invention of Statistical Mechanics.

It turns out that Statistical Mechanics has practical applications. A
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good example is provided by combustion reactions. These produce transient

species, such as OH radicals, which are very reactive. We cannot isolate and

purify them, to measure their thermodynamic properties, such as heat ca-

pacity, entropy, or energy of formation. Unless we know these properties, we

cannot calculate how the temperature and the composition of a °ame depend

on the working conditions. This makes it harder to design boilers or engines

that burn fuel e±ciently and produce a minimum amount of pollutants. It so

happens that it is rather easy to measure the emission spectrum of the OH

radical in the °ame and determine its vibrational and rotational energies. Us-

ing these quantities, Statistical Mechanics can calculate the thermodynamic

properties of this transient species.

In the past decade, computers have become so powerful that we can use

Statistical Mechanics to calculate the thermodynamic properties of gases, liq-

uids, solids, polymers, proteins, and enzymes. In some of these calculations,

we are not limited by shortcomings of Statistical Mechanics or by lack of com-

puter power but by our incomplete knowledge of the energy of interaction

between molecules. As our knowledge of these interactions improves, practi-

cal chemists, biochemists, and engineers will perform Statistical Mechanical

calculations routinely to solve the problems that appear in their practice.

As you read this, scientists at Merck, P¯zer, Schering-Plough, and other

pharmaceutical companies are using computer programs based on Statistical

Mechanics to help design better drugs.

x2.Why is this theory statistical? A discussion based on Classical

Mechanics. The premise of Statistical Mechanics is simple: the motion
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of the molecules in a material determines its macroscopic properties. Let

us take this assertion seriously and think about its consequences. To make

the argument simpler, I assume that the motion of the molecules inside any

material is described by Classical Mechanics and that I know the forces of

interaction between the atoms or the molecules present in the system. Given

these assumptions, I can use Newton's equation to calculate how each atom

in the system moves. If the premise of Statistical Mechanics is correct, this

should allow me to understand the macroscopic properties of the material.

This is a ¯ne idea, but as I pursue it I will ¯nd that I don't know how

to implement it. To solve Newton's equation, I must know the positions

and the velocities of all the atoms in the system at one time. If I know

that, I can calculate the position and the velocity of each atom at all other

times. Unfortunately, there is no experiment capable of telling me what the

positions and velocities of each atom in the gas are at a given time. Nor do

I have any reasonable hope that I can ever make such a measurement.

Even if I could determine the initial positions and velocities and solve

Newton's equations, I do not know how to use this information to calculate

the thermodynamic properties of the gas. I might assume that the energy

of the system is the total mechanical energy of all the molecules in the sys-

tem. But this cannot be quite right: I know that the energy depends on

temperature, while the calculation I just mentioned has no temperature in

it.

Greater di±culties appear when I start thinking about temperature, heat,

entropy, heat capacity, etc. Mechanics does not tell me how to use the posi-

tions and the velocities of every molecule in the gas to calculate its entropy
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or the temperature. To perform such calculations, I must add new concepts

to Mechanics, and this is what Statistical Mechanics does.

Finally, here is the most powerful blow to my idea: a theory that describes

the motion of each atom in the system has no connection with thermody-

namic experiments. In thermodynamics I control the system very crudely,

by ¯xing the temperature and the pressure. Let us call the state reached

by ¯xing T and p, the macroscopic state of the system. The state speci¯ed

by giving the momenta fp1; : : : ;pNg and the positions fr1; : : : ; rNg of the
atoms will be called themicroscopic state C = fr1; : : : ; rN ;p1; : : : ;pNg of the
system. To use mechanics, I must know the microscopic state of the system.

However, our experience with thermodynamics says that it is enough to know

T and p. Thus, there is a tremendous reduction of the amount of information

as I go from mechanics to thermodynamics. Statistical Mechanics must ¯nd

a mathematical scheme for achieving this reduction; the theory has to show

me how to intelligently throw away most of the information contained in the

microscopic state.

To do this, I start with the observation that there are a very large number

of microscopic states compatible with a given macroscopic state. This means

that there are many sets of di®erent momenta and positions that will give

the same pressure and temperature. Let us call these microscopic states,

the microscopic states compatible with ¯xed T and p. When I ¯x the tem-

perature and pressure, the system could be in any one of these equivalent

states. Statistical Mechanics recognizes that we have no way of determining

in what microscopic state the system is. In the absence of this knowledge,

the next thing is to know the probability P (C(T; p)) that the system has a
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certain microscopic state C(T; p) = fr1; : : : ; rN ;p1; : : : ;pNg. I use the nota-
tion C(T; p) to indicate that this is a microscopic state for which the gas has

the pressure p and temperature T . The probability P (C(T; p)) will depend

on T and p.

Next I assume that the measured thermodynamic energy U is the average

energy

U(T; p) =
X
C(T;p)

E(C(T; p))P (C(T; p)) (1)

The quantity E(C(T; p)) is the mechanical energy of the system in the mi-

croscopic state C(T; p). This is the kinetic energy of all atoms in the system,

plus the energy of the interaction between them. The sum in Eq. 1 is over

all microscopic states compatible with T and p. The whole expression is the

average energy at given values of temperature and pressure.

To de¯ne entropy, we need a new idea; mechanics alone is insu±cient and

Statistical Mechanics provides the necessary formula. Once we know the in-

ternal energy U and the entropy S, we can calculate all other thermodynamic

quantities, by following the rules of thermodynamics.

Exercise 1 Go back and read your thermodynamics book and try to ¯gure
out how you can calculate all thermodynamic quantities if you know U(T; p)
and S(T; p).

x3.Why use a statistical method; a Quantum Mechanical discus-

sion. The argument just given is based on the assumption that I can de-

scribe the motion of the molecule by using Classical Mechanics. This is often

a good approximation, but the world of the molecules is ruled by Quantum

Mechanics and Statistical Mechanics must be based on it. Classical theories

can only serve as an approximation.
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To describe the microscopic states of a system, I must solve the time-

independent SchrÄodinger equation. This gives me the energy eigenstates ªi,

and the corresponding energy eigenvalues Ei, that the system can have. If

the system were alone in the world, its state would be the lowest energy

eigenstate ª0. However, in thermodynamics the system is in contact with

a thermostat. I know from Quantum Mechanics that the interaction of a

system with something (in our case the thermostat) causes transitions from

the initial energy eigenstate ª0 to other eigenstates ªi. For a very large

system the energy di®erence between various energy eigenstates is very small.

Because of this, the contact with the thermostat will cause transitions to a

very large number of eigenstates.

Exercise 2 Get your Quantum Mechanics book and ¯nd the formula for
the energy eigenstates of a particle in a box. Calculate the ¯rst 10 energy
eigenstates for an argon atom enclosed in a cubic box of volume 1 cm3. Find
out how much energy it takes to excite the system from the ground state to
the tenth excited state. Then calculate the change of the internal energy per
atom when you increase the temperature by 10 K (from 298 K to 308 K).
use cp = 20:786 J/mol K. Is this energy enough to excite the system from
the ground state to the tenth excited state?

In a macroscopic experiment, I do not control the energy but instead the

temperature and the pressure. There are many energy eigenstates that are

compatible with a given pair T; p, and we do not know for sure what the

microscopic state of the system is. Just as in the classical case, Statistical

Mechanics provides the probability that for certain values for p and T , the

system is in the microscopic state ªi. With these probabilities, I can calculate

the mean energy and the entropy of the system.
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1.2. The Fundamental Equations of Statistical Mechanics

x4. The fundamental equations are guesses. I will give here the basic

equations of Statistical Mechanics. They are not derived by logical arguments

from laws of Nature that we take for granted; they were obtained by inspired,

educated guesses. There are arguments that lead us to believe that these

guesses are reasonable, but they don't prove them. We believe that the

equations are correct because mathematical deductions based on them agree

with a large number of results obtained by measurements. For example, the

entropy and the speci¯c heat of gaseous Xe calculated from these equations

agree with the measured values.

Since this is your ¯rst encounter with Statistical Mechanics, I will write

down the basic equations without presenting the rationalization used to jus-

tify them. Such justi¯cations are better understood after you had some

experience with the applications of the theory.

x5. The fundamental equations: the probability that the system is

in a speci¯c state. Consider a system containing N molecules in ther-

modynamic equilibrium. They are enclosed in a box of volume V and are

in contact with a thermostat that keeps the temperature equal to T . From

Quantum Mechanics I know that any system of N molecules in a box of vol-

ume V has an in¯nite number of energy eigenstates having the wave function

ª® and the energy E®(N;V ); ® = 0; 1; 2; : : :. In this notation it is understood

that E0 ∙ E1 ∙ E2 ∙ : : :.
The energy E® = E®(N; V ) is an energy of the whole system. Calculating

it is a problem in Quantum Mechanics. In principle, to do this I write the
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Hamiltonian H of the system, which is the sum of the kinetic energies of all

atoms plus the interaction energy between them. Then, to obtain the energy

eigenstates of the system, I solve the SchrÄodinger equation Hª® = E®ª®.

This solution gives me a list of energy eigenstates ª® and the corresponding

energies E®. Here ® is an integer that labels the states.

Had the system been alone in the world, it would have slowly emitted

radiation and gone into the lowest energy state. However, the interaction

with the thermostat causes transitions from one energy eigenstate to another.

Because of this, I no longer know what the state of the system is. However,

Statistical Mechanics gives me the next best thing: the probability P® that

the system has the state ª®, with energy E®. This is given by

P®(N;T; V ) =
exp[¡E®(N; V )=kT ]

Q(N; T; V )
(2)

with

Q(N; T; V ) =
1X
®=1

exp[¡E®(N; V )=kT ] (3)

When applying these equations, it is necessary to distinguish between the

states ª® and the energies E®. As you learned in Quantum Mechanics, it is

possible that several states have the same energy. When this happens, we

say that the sates having the same energy are degenerate. In most cases,

there are physical reasons for such degeneracy. For example, the degenerate

states of an electron in the hydrogen atom have the same energy but di®erent

angular momentum and spin. It is important to remember that the sum in

Eq. 3 is over all states. If there are three states having the same energy

", the term exp[¡"=kT ] appears three times in the sum de¯ning Q. You

should also realize that the probability that a molecule has a speci¯c energy
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is di®erent from the probability that the molecule is in a speci¯c state having

that energy. For example, if the states ª7, ª8, and ª9 are degenerate and

have the energy ", then the probability that the system is in the state ª7 is

exp[¡"=kT ]
Q

;

while the probability that the system has the energy " is

3 exp[¡"=kT ]
Q

:

The eigenvalues E® depend on the volume of the system and on the num-

ber N of particles. E® depends on volume because the particles are con¯ned

to a box of volume V . As you have learned in the lectures on Quantum

Mechanics, the energy of a particle in a box depends on the volume of the

box. The dependence on the number of particles is easy to understand: very

roughly speaking the total energy is the sum of the energy of all molecules

so more molecules means higher energy. The energies E® do not depend on

temperature since this quantity does not appear in the SchrÄodinger equation.

The quantity k is the Boltzmann constant:

k = 1:3806£ 10¡16 erg=K = 0:695104 cm¡1=K

= 3:29977£ 10¡27 kcal=K = 8:61771£ 10¡5 eV=K (4)

x6. The fundamental equations: connection to thermodynamics.

Eq. 2 is very useful, but it is not enough. To develop a molecular theory of

thermodynamics, I must ¯nd a recipe for calculating thermodynamic prop-

erties. It can be shown that the Helmholtz free energy A(N;T; V ) is given

by

A(N; T; V ) = ¡kT lnQ(N; T; V ) (5)
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Equations 2, 3, and 5 are the starting point of Statistical Mechanics. The

rest of these lecture notes will teach you how to use them to study a variety

of chemical systems and phenomena.

x7. Formulae for other thermodynamic quantities. You have learned

when you studied thermodynamics that you can calculate any thermody-

namic quantity from the Helmholtz free energy. I summarize below the

equations used to perform such calculations. These relationships are used

throughout these lectures.

² The entropy S of the system is

S = ¡
Ã
@A

@T

!
N;V

(6)

² The pressure p is
p = ¡

Ã
@A

@V

!
N;T

(7)

² The internal energy of N molecules can be calculated from either

U = A+ TS (8)

or

U = ¡T 2 @
@T

µ
A

T

¶
N;V

(9)

² The enthalpy is
H = U + pV (10)

² The speci¯c heat at constant volume is obtained from

cv =

Ã
@u

@T

!
N;V

(11)
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or

cv = T

Ã
@s

@T

!
N;V

(12)

where u and s are the energy and the entropy of a mole of substance.

² The speci¯c heat at constant pressure is obtained from

cp =

Ã
@h

@T

!
p;N

(13)

or

cp = T

Ã
@s

@T

!
p;N

(14)

where h is the enthalpy per mole.

² The Gibbs free energy for N molecules is

G = A+ pV = U ¡ TS + pV = H ¡ TS (15)

The ¯rst equation is the de¯nition; the second follows from the de¯-

nition A = U ¡ TS; the third is obtained by using the de¯nition of
enthalpy (which is H = U + pV).

² The chemical potential per molecule in a system with one component

is

¹ =

Ã
@A

@N

!
T;V

(16)

or

¹ =
G

N
(17)

For a mixture, the chemical potential of component i is

¹ =

Ã
@G

@ni

!
T;p;nj

(18)
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where ni is the number of moles of component i. The derivative is

taken while keeping constant temperature, pressure, and the number

of moles of components other than i. The subscript T; p; nj reminds us

of this.

The quantities U , S, A, H, Cv, and Cp are extensive: they are pro-

portional to the number of molecules in the system. If I take N = NA =

60:222 £ 1023 (this is Avogadro's number, which is equal to the number of
molecules in one mole), then I obtain the values of these functions per mole.

If I divide by N , I obtain the values per molecule.

x8. Summary of the recipe for calculating thermodynamic func-
tions. To start, I must calculate the quantum energies E® of the system.

Then I can obtain Q from Eq. 3 and all thermodynamic quantities from

Eqs. 5{16. The only limitation in applying this theory is our inability to

calculate the energies E® for complicated systems. If such calculations could

be performed reliably, the equations listed above would completely replace

all thermodynamic measurements.

x9. Classical Statistical Mechanics. Many of the systems in which

chemists are interested are described well by Classical Mechanics. In this

case, Eqs. 2 and 3 take a di®erent form (see Chapter @) and the partition

function is easier to calculate. The computational methods are so powerful

that if we know the interactions between the atoms in the system, we can

calculate thermodynamic properties for liquids, solids, polymers, proteins,

etc.


