Problem set 5; chem 131 (231)A

- 1. Draw a potential energy diagram to illustrate: Use ΔG as the label for the y-axis.
- [a] an S_N1 reaction
- [b] an S_N2 reaction
- [c] a Diels-Alder reaction
- [d] an exothermic process starting from a reactive intermediate
- [e] an endothermic process leading to the formation of an intermediate
- [f] a kinetically controlled process wherein the product of thermodynamic control differs from it.
- [g] the Bell-Evans-Polanyi principle
- [h] the Hammond postulate
- 2. [i, a-h] Provide a specific example for each of the cases of problem 1.
- [ii] For '1a', label the transtition state for the rate determining step and for the fast step. Draw a picture to illustrate what each transition state might look like. Pay attention to hybridization and geometry. Illustrate the overall energy change, and the free energy of activation.
- 3. Complete the following reactions and formulate a mechanism for each.

$$0 \qquad 0 \qquad H_3O^{\bigoplus}$$

$$N_{N} \sim \Delta$$

$$SO_2Ph$$
 Br
 $(n-Bu)_3SnH, AIBN$
 $PhH, reflux$