OVERVIEW OF SOME
ASPECTS OF
HMO THEORY

SCHRÖDINGER EQ.

\[H\psi = E\psi \]

Eigenvalue

\[x \times y^* \int d\mathbf{T} \]

E = \[\frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle} \]

\[\psi_i = \sum c_r \chi_r \]

\[E_i = \frac{\sum c_r c^*_s \langle \chi_r | H | \psi_s \rangle}{\sum c^*_s c_s} \]

Want smallest \(E \) subject to the condition that the VARIATION THEOREM holds true.

\[\sum (H_{ss} - E_s) c_s = 0 \]

For \(r = 1, 2, 3, \ldots \)

SECTORIAL EQUATIONS

\[\sum (H_{rs} - E_s) c_s = 0 \]

\[\sum (H_{rs} - E_s) c_s = (H_{rr} - E_{rr}) c_r + \sum (H_{rs} - E_s) c_s \]

\[O = \sum (H_{rs} - E_s) c_s \]

\[O = (\alpha - E_i) c_r + \sum \beta c_s \]

\[O = x_i c_r + \sum \frac{c_s}{c^*_s} \]

SOLVE FOR \(x_i \). Then, use \(k_i \) to determine \(c_r \).