
Copper is one of the transition metals with unusual electronic structure. In particular, the high stability associated with completely filled shell of d-electrons makes the  $4s^13d^{10}$  configuration of electrons more stable than the naively-expected  $4s^23d^9$  configuration. Loss of the single 4s electron gives  $Cu^+$  ion, which has properties of both an oxidant and reductant. For example, two  $Cu^+$  ions undergo a disproportionation reaction in which a single electron is transferred from  $Cu^+$  atom to  $Cu^+$  atom to give  $Cu^{2+}$  and  $Cu^0$ .

The Cu<sup>+</sup> and Cu<sup>++</sup> ions support different number of coordinating ligands: Cu<sup>+</sup> typically binds four ligands while Cu<sup>++</sup> ion binds five or six ligands. If Cu<sup>+</sup>, bound to four ligands, is oxidized to Cu<sup>++</sup>, the central ion will attempt to acquire additional ligands. If Cu<sup>++</sup>, bound to five ligands, is reduced to Cu<sup>+</sup>, the central ion will give up one ligand. This allows constructing **molecular machines**: molecules that perform work (undergo directional motion) in response to chemical reaction. The picture below (from Poleschak et al, ChemCommun., 2004 474-476) illustrates one such molecular machine:



Analyze this molecular machine and identify a **correct** statement

- 1) If the red atom is Cu<sup>+</sup>, then the reduction of this compound by one electron will lead to a 180° rotation of the blue macrocyclic ring
- 2) If the red atom is Cu<sup>++</sup>, then the reduction of this compound by one electron will lead to a 180° rotation of the blue macrocyclic ring
- 3) If the red atom is Cu<sup>+</sup>, then the oxidation of this compound by one electron will lead to a 180° rotation of the blue macrocyclic ring
- 4) If the red atom is Cu<sup>++</sup>, then the oxidation of this compound by one electron will lead to a 180° rotation of the blue macrocyclic ring
- 5) It does not matter if the red atom is Cu<sup>+</sup> or Cu<sup>++</sup>; the blue ring will slip off the black axel and the molecular machine will be broke.