Course syllabus for Chemistry 162/262

Drug Design (Winter 2005)

Class meets: Mon, Wed, Fri 12:00 – 12:50 AM Phelps 1440

Instructor: Professor *Kalju Kahn*, Office: PSB-N 1511

E-mail: <u>kalju@chem.ucsb.edu</u> Phone: (805) 893-6157 Office Hours: Tue 12:00-1:00 and Thu 12:30-1:30 PM or by appointment

Course website: http://www.chem.ucsb.edu/~kalju/chem162

Lecture Textbooks:

Required: Richard B. Silverman,

The Organic Chemistry of Drug Design and Drug Action, 2nd edition (2004)

The Course:

In Chem 162 students learn principles that govern the process of modern drug discovery and development. Students will follow a path similar to that taken by real-life drug developers by learning important elements of the drug design process in a logical order. Some topics that we focus more extensively are:

> Target validation

Structure-base drug design

> Enzyme inhibition

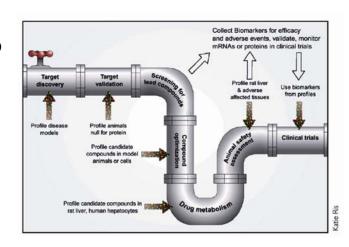
Drug metabolism

Expectations of Students:

- > Attendance and taking good lecture notes is expected. Submitting completed assignments in time is required.
- The textbook provides some necessary background material. Furthermore, students are expected to read modern drug design-related research literature. Required literature will be available on the course website.
- Honesty and academic integrity must be always preserved. While discussing your ideas with others is encouraged outside the classroom, you must answer the assignment questions individually. No supplemental material should be used during an exam.
- Your grade in the course is based on points you collect from the weekly assignments (10 points each), the midterm (40 points), the poster presentation (20 points), and the final written research proposal (50 points). Grading will be based on the curve but you have to meet a certain level to get a grade higher than F.
- The course requires that you have a solid understanding of basic biology and organic chemistry; good background in biochemistry and physical chemistry will be very helpful.

Study tips:

- I am posting lecture note slides on-line before the class meets so that you can focus on following my talk. The slides are mainly illustrative and you need to follow the lecture in order to fully understand the topics I cover.
- Come in class prepared. Read the relevant textbook material and required reading **before** the class meets. I like to interact with students during our meetings and you enjoy the lectures more if you can think along.
- Review (or rewrite) your class notes the same day and supplement them with material from the textbook and other resources (optional reading, Internet). Ask for help if something remains unclear.
- This course is not about memorization of names, reactions, or facts. It is about understanding the process, its principles and methods. You should demonstrate good understanding of the material when answering assignment questions and the midterm problems. Your creativity and originality are highly important for getting a high score in the final written proposal.


Good luck! — Kalju

Chem162/262		Schedule for the Winter 2005	
Jan 3 rd	M	Overview of the course. History of drug design.	
Jan 5 th	W	Current trends and future of drug design. Diseases.	
Jan 7 th	F	Target validation.	
Jan 10 th	M	Target Validation.	
Jan 12 th	W	Enzymes as drug targets.	First assignment due
Jan 14 th	F	Receptors as drug targets.	
Jan 17 th	M	Martin Luther King, Jr.'s Birthday.	
Jan 19 th	W	Enzyme mechanisms.	Second assignment due
Jan 21 st	F	Enzyme kinetics and inhibition. Reversible inhibitors, TSA.	
Jan 24 th	M	Irreversible inhibitors. Mechanism-based inactivators.	
Jan 26 th	W	Drug-receptor interactions. Pharmacodynamics.	Third assignment due
Jan 28 th	F	Biochemical and cell-based assays, lead identification.	
Jan 31 st	M	Biomolecular interactions and binding thermodynamics.	
Feb 2 nd	W	Structure-based drug design: Principles.	Fourth assignment due
Feb 4 th	F	Structure-based drug design: Docking and visualization, FEP	
Feb 7 th	M	QSAR: Theoretical foundations.	
Feb 9 th	W	QSAR: Applications.	Fifth assignment due
Feb 11 th	F	Combinatorial chemistry and screening	
Feb 14 rd	M	Pharmacokinetics (ADME).	
Feb 16 th	W	Medicinal Chemistry: Lead modification.	
Feb 18 th	F	Mid-Term Examination (45 minutes)	
Feb 21 st	M	President's Day	
Feb 23 rd	W	Drug metabolism: Principles and Methods	Sixth assignment due
Feb 25 th	F	Drug metabolism: Pathways for deactivation	
Feb 28 th	M	Prodrugs. Drug delivery systems.	
March 2 nd	W	Pharmacogenomics.	Seventh assignment due
March 4 th	F	Pharmacogenomics.	
March 7 th	M	Nucleic acids as therapeutics.	
March 9 th	W	Proteins as therapeutics (Amgen guest lecture?).	Eight assignment due
March 11 th	F	Posters . Noon–2:00 PM, Chemistry breezeway.	
March 14 th	F	Written proposals due	

Assignments

(will be posted on Wednesday one week before the due date)

- 1. Target validation exercise
- 2. Enzymes and receptors
- 3. Enzyme mechanisms, kinetics, and inhibition
- 4. Biomolecular interactions and assay development
- 5. Structure-based drug design
- 6. QSAR and combinatorial chemistry, screening
- 7. Drug metabolism, prodrugs, drug delivery
- 8. Pharmacogenomics

Chem162/262 Textbook reading guide

It is not necessary to know all the material in the textbook for this course. The following pages are most relevant for each topic that we discuss. However, interested students are encouraged to read more. N/A means that the textbook does not offer adequate coverage; students should use posted research literature or other more specialized texts as a source of additional information.

Jan 3 rd	M	Overview of the course. History of drug design.	1-11
Jan 5 th	W	Current trends and future of drug design. Diseases.	N/A
Jan 7 th	F	Target validation.	N/A
Jan 10 th	M	Target Validation. Enzymes as drug targets. Drug Resistance. Receptors as drug targets.	N/A
Jan 12 th	W		229-240
Jan 14 th	F		122-124
Jan 17 th Jan 19 th Jan 21 st	M W F	Martin Luther King, Jr.'s Birthday. Enzyme mechanisms. Enzyme kinetics and inhibition. Reversible inhibitors, TSA.	174-190 227-264
Jan 24 th	M	Irreversible inhibitors. Mechanism-based inactivators. Drug-receptor interactions. Pharmacodynamics. Biochemical and cell-based assays, lead identification.	274-302
Jan 26 th	W		131-159 (-165)
Jan 28 th	F		11-17
Jan 31 st	M	Biomolecular interactions and binding thermodynamics.	122-136
Feb 2 nd	W	Structure-based drug design: Principles.	268-272
Feb 4 th	F	Structure-based drug design: Docking and visualization, FEP	78-83
Feb 7 th	M	Pharmacokinetics (ADME). QSAR: Theoretical foundations & Bioavailability QSAR: Applications to increase efficacy	N/A
Feb 9 th	W		51-66
Feb 11 th	F		66-78
Feb 14 th Feb 16 th Feb 18 th	Medici W F	nal Chemistry: Lead modification Combinatorial Chemistry Mid-Term Examination (45 minutes)	7-34 34-50
Feb 21 st Feb 23 rd Feb 25 th	M W F	President's Day Drug metabolism: Principles and Methods Drug metabolism: Pathways for deactivation	406-414 415-448
Feb 28 th	M	Prodrugs. Drug delivery systems Pharmacogenomics Pharmacogenomics	498-528
March 2 nd	W		N/A
March 4 th	F		N/A
March 7 th March 9 th March 11 th	M W F	Nucleic acids as therapeutics Proteins as therapeutics (Amgen guest lecture?) Posters . Noon–2:00 PM, Chemistry breezeway	324-328, 342-359 N/A