Course syllabus for Chemistry 162/262

Drug Design

Class meets: Mon, Wed, Fri 10:00 – 10:50 AM Webb 1100

Instructor: Professor *Kalju Kahn*, Office: PSB-N 1511,

E-mail: kalju@chem.ucsb.edu Phone: (805) 893-6157

Office Hours: Tue and Fri (12:00-1:00 PM) or by appointment Course website: http://www.chem.ucsb.edu/~kalju/chem162

Teaching Assistant: August Estabrook, Chem 1148, x8283 aestabrook@chem.ucsb.edu

Lecture Textbooks:

Required: Richard B. Silverman,

The Organic Chemistry of Drug Design and Drug Action, 2nd edition

The Course:

In Chem 162 students learn principles that govern the process of modern drug discovery and development. Students will follow a path similar to that taken by real-life drug developers by learning important elements of the drug design process in a logical order. Some topics that we focus more extensively are:

> Target validation

Structure-base drug design

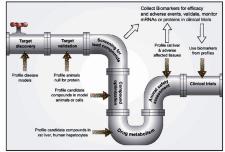
> Enzyme inhibition

Drug metabolism

Expectations of Students:

- Attendance and taking good lecture notes is expected. Submitting completed assignments in time is required.
- The textbook provides necessary background material. Furthermore, students are expected to read modern drug design-related research literature. Required literature will be available on the course website.
- ➤ Honesty and academic integrity must be always preserved. While discussing your ideas with others is encouraged outside the classroom, you must answer the assignment questions individually. No supplemental material should be used during an exam.
- Your grade in the course is based on points you collect from the weekly assignments (10 points each), the mid-term (40 points), the poster presentation (20 points), and the final written research proposal (50 points). Grading will be based on the curve but you have to meet a certain level to get a grade higher than F.
- The course requires that you have a solid understanding of organic chemistry; good background in biochemistry and physical chemistry will be very helpful.

Study tips:


- Read the relevant textbook material and required reading **before** the class meets. I like to interact with students during our meetings and you enjoy the lectures more if you can think along.
- Review (or rewrite) your class notes the same day and supplement them with material from the textbook and other resources (optional reading, Internet). Ask for help if something remains unclear.
- This course is not about memorization of names, reactions, or facts. It is about understanding the process, its principles and methods. You should demonstrate good understanding of the material in when answering assignment questions and the midterm problems. Your creativity and originality are highly important for getting a high score in the final written proposal.

Good luck! — Kalju

Chem162/262		Schedule for the Spring 2004		
March 29 th	M	Overview of the course. History of drug design		
March 31 st	W	Current trends and future of drug design. Diseases		
April 2 nd	F	Target validation.		
April 5 th	M	Biomolecular interactions. Receptors and enzymes.	First assignment due	
April 7 th	W	Lead discovery and modification. Pharmacophores		
April 9 th	F	Pharmacokinetics (ADME)		
April 12 th April 14 th April 16 th	M W F	Enzyme mechanisms Enzyme kinetics and inhibition Enzyme inhibition. Reversible inhibitors, TSA	Second assignment due	
April 19 th	M	Enzyme inhibition. Irreversible inhibitors. Mechanism-ba	sed inactivators Third assignment due	
April 21 st	W	Drug-receptor interactions. Pharmacodynamics.		
April 23 rd	F	Structure based drug design: Overview		
April 26 th	M	Structure-based drug design: Theoretical foundations	Fourth assignment due	
April 28 th	W	Structure-based drug design: Docking, FEP		
April 30 th	F	Structure-based drug design: Virtual screening		
May 3 rd May 5 th May 7 th	M W F	Medicinal and Combinatorial Chemistry Mid-Term Examination (45 minutes) QSAR: Theoretical foundations, applications	Fifth assignment due	
May 10 th	M	Drug metabolism and toxicity	Sixth assignment due	
May 12 th	W	Drug metabolism: Pathways for deactivation		
May 14 th	F	Prodrugs. Drug delivery systems		
May 17 th May 19 th May 21 st	M W F	Pharmacogenomics Pharmacogenomics Nucleic acids as therapeutics	Seventh assignment due	
May 24 th May 26 th May 28 th	M W F	Proteins as therapeutics Animal studies and clinical trials Intellectual property. Drug approval	Eight assignment due	
May 31 st	M	Memorial Day:	Ninth assignment due	
June 2 nd	W	Pharmaceutical industry: Strategic management		
June 4 th	F	Posters . Noon–2:00 PM, Chemistry breezeway		
June 7 th	M	Written proposals due		

Assignments (will be posted on Wednesday week before the due date)

- 1. Target validation
- 2. Biomolecular interactions. Pharmacokinetics
- 3. Enzyme mechanisms and kinetics
- 4. Enzyme inhibition and inactivation
- 4. Structure-based drug design
- 5. Medicinal and combinatorial chemistry, screening
- 6. QSAR
- 7. Drug metabolism, prodrugs, drug delivery
- 8. Pharmacogenomics
- 9. Nucleic acids and proteins as therapeutics

Chem162/262 Textbook guide

It is not necessary to know all the material in the textbook for this course. The following pages are most relevant for each topic that we discuss. However, interested students are encouraged to read more. N/A means that the textbook does not offer adequate coverage; students should use posted research literature as a source of additional information.

History of drug design Current trends and future of drug design. Diseases Target validation	1-11 N/A N/A
Biomolecular interactions. Receptors and enzymes. Lead discovery and modification. Pharmacophores Pharmacokinetics (ADME)	122-137 11-34; 51-66
Enzyme mechanisms Enzyme kinetics and inhibition Enzyme inhibition. Reversible inhibitors, TSA	174-190 227-240 241-264
Enzyme inhibition. Irreversible inhibitors. Mechanism-based inactivators Drug-receptor interactions. Pharmacodynamics Structure based drug design: Overview	274-302 137-159, suggested: 159-165 78-87; 268-272
Structure-based drug design: Theoretical foundations Structure-based drug design: Docking, FEP Structure-based drug design: Virtual screening	N/A 82-83 N/A
Medicinal and Combinatorial Chemistry QSAR: Theoretical foundations, applications	34-50 66-78
Drug metabolism and toxicity Drug metabolism: Pathways for deactivation Prodrugs. Drug delivery systems	406-414 415-448 498-528
Pharmacogenomics Pharmacogenomics Nucleic acids as therapeutics	N/A N/A 324-328, 342-359
Proteins as therapeutics Animal studies and clinical trials Intellectual property. Drug approval	N/A N/A N/A
Pharmaceutical industry: Strategic management	N/A