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Multiple Linear Least-Squares Regression. 

 
Estimation of regression  parameters 

There are many situations where more than one independent variable determines the observed 

signal.  An important field of science where such situations frequently arise is drug design based on 

quantitative structure-activity relationships (QSAR).  The ultimate goal of QSAR-based drug design is to 

find out which structural properties confer the drug highest potency or lowest toxicity.  The drug’s potency 

is here a dependent variable, and the structural properties, also called molecular descriptors, are the 

independent variables.  The experimental signal that measures the potency could be, for example, the 

binding affinity of a drug candidate to its target protein.  Some molecular descriptors for substituents are 

the lipophilicity (π) of a group, polarizability (α) of a group, and electron-withdrawing ability (σ) of a 

group.  To predict which structures have the highest potency, parameters in the regression model relating 

multiple descriptors to the potency must be determined.   

We will illustrate such analysis with a real, albeit simple example.  Consider the binding affinity 

in a series of bi-substituted N-Acetyl L-amino acid methyl esters for the digestive protein chymotrypsin. 

The active site of chymotrypsin has a hydrophobic binding pocket that accommodates the side chain R2.  

Thus one would expect that more hydrophobic substituents at position R2 increase 

binding.  The R1 group makes several weaker, non-specific van der Waals interactions 

with the protein.  Because the strength of van der Waals interactions depends on 

polarizability, one would predict that more polarizable substituents at R1 increase 

binding affinity.  The simplest approach is to assume that the binding free energy, which is proportional to 

an experimentally determined quantity log 1/Kd, is linearly dependent on the hydrophobicity and 

polarizability.  To determine the coefficients, we need to measure binding affinities for a set of compounds 

that have different substituents at R1 and R2, and then find the best linear equation that relates known 

hydrophobicity and polarizability descriptors to the observed binding affinity.  For each compound in a 

series we can write:  

Log 1/Kd (1)   =  1 · b0  +  π1 ·  b1 +   α1 ·  b2 

Log 1/Kd (2)   =  1 · b0  +  π2 ·  b1 +   α2 ·  b2 

Log 1/Kd (3)   =  1 · b0  +  π3 ·  b1 +   α3 ·  b2 

Log 1/Kd (4)   =  1 · b0  +  π4 ·  b1 +   α4 ·  b2 

Log 1/Kd (n)   =  1 · b0  +  πn ·  b1 +   αn ·  b2 

The parameters b0, b1, and b2 can be determined via multiple lest-squares linear regression.  The algebraic 

equations for multiple linear least squares are rather complex and we are not presenting them here.  

However, the problem can be cast into matrix notation, where the solution is both elegantly simple and 

computationally efficient.    The observed binding data can be represented as a column vector Y with n 

rows, values of two structural descriptors as a matrix X with three columns and n rows, and the unknown 

parameters as a column vector B with three rows.  The errors in each measurement of binding affinity can 



be grouped into a column vector E with n rows.  The matrix algebra tells us that the binding affinity vector 

Y can be calculated by multiplying descriptor matrix X with the parameter vector B and adding a vector of 

residual errors E  

 
In the condensed matrix notation, the above reads Y = X · B  + E 

The best parameters are determined by finding a vector B that minimizes the squared residuals in 

matrix E.  The matrix formula to calculate the least-squares estimate of vector B is:  

( ) YXXXB TT 1−
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This means that the parameter vector B is obtained by multiplying the transpose of matrix X with the 

matrix X, inverting the product matrix, then multiplying the inverted product matrix with the transposed 

matrix X, and finally multiplying the result of previous operations with the matrix Y.  Other statistical 

characteristics, such as the standard deviation for each parameter, can be also calculated.  

Multiple linear regression problems are well suited for computers. One program that can easily 

solve multi-variable linear least-squares problems is Mathematica by Wolfram Research 

(http://www.wolfram.com/).  This program is installed on the SGI computers in Laboratory of 

Computational Chemistry and Biochemistry.  Mathematica offers couple of ways to perform multiple 

linear regression.  First, Mathematica can directly deal with matrixes, and one can write the matrix equation 

above as fitB = Inverse[Transpose[matX] . matX] . Transpose[matX]] . vecY 

The function PseudoInverse can be used instead of Inverse with matrixes that are difficult to invert. 

Second, one can use the built-in function Regress.  It takes three sets of arguments.  The first set 

is the data to be analyzed, the second set is the description of the regression model, and the third set is the 

list of independent variables.  The data set is a matrix with the dependent variable in the last column.  The 

description of the linear regression model requires the list of descriptors in the model, including the 

intercept term.  The list on independent variables just gives the descriptors. 
<<"Statistics`LinearRegression`" 

Hydrophobicity = {1.5,2.2,3.1,3.8,4.1,4.5,4.9,5.3} 

Polarizability = {11, 32, 17, 38, 22, 10, 18, 6} 

Binding = {69.7, 85.8, 79.7, 96.3, 89.3, 84.6, 93.1, 88.1} 

DataLR1 = Transpose[{Hydrophobicity, Binding}]; 

DataLR2 = Transpose[{Polarizability, Binding}]; 

DataMLR = Transpose[{Hydrophobicity, Polarizability, Binding}]; 

LinReg1 = Regress[DataLR1, {1, x}, x] 

LinReg2 = Regress[DataLR2, {1, x}, x] 

MLRReg = Regress[DataMLR, {1, x1, x2}, {x1, x2}] 


