Assignment #2:

Biomolecular Interactions. Pharmacokinetics. Receptors and Enzymes

1. The compound shown below was found to be effective agonist of the M1 subtype of muscarinic acetylcholine receptor and serves as a one of the leads to develop drugs to treat Alzheimer's disease.

- a) Name three roles of the muscarinic acetylcholine receptor in human body.
- b) What are the two main differences between the nicotinic acetylcholine receptor and the muscarinic acetylcholine receptor?
- c) The strength of hydrophobic interaction between a receptor and its ligand generally increases as the hydrophobic surface area of the ligand increases. For example, the analog with methyl ether side-chain binds about 10 times weaker than the hexyl ether analog shown above. Comment of the proposal that in order to further increase the efficacy of orally administered Alzheimer's drug, a significantly longer (e.g. decyl) alkyl ether side-chain analogs should be used.
- 2. The free energy of interaction between the receptor and its ligand is determined both by the enthalpy and entropy changes that occur in the binding process.
 - a) Discuss general strategies how to modify the structure of the lead compound such that the enthalpy of binding becomes more favorable
 - b) Discuss general strategies how to modify the structure of the lead compound such that the entropy of binding becomes more favorable
 - c) The following compound was synthesized (Tyndall et al, *J. Med. Chem.*, **43**, 3495 -3504, 2000) and showed strong inhibition of HIV protease in vitro ($K_i = 0.3 \text{ nM}$).
 - i) What are the potential advantages of this compound over existing HIV drugs?
 - ii) Discuss the issues that might arise in clinical applications with drugs that are highly conformationally constrained.
- 3. Consider a drug that has only one mode of clearance (spontaneous pseudo-first order hydrolysis with a rate constant of 0.4 hours⁻¹) from the bloodstream.
 - a) Calculate the half-life of this drug in the bloodstream.
 - b) Calculate the molar concentration of a drug in the bloodstream after 8 hours of injecting 3 mL of 100 mM drug solution into the patient. Assume that the total blood volume is 5.5 L.

Project development.

You will be submitting a drug design proposal at the end of this course. As a first part of this project, you are expected to identify a disease that you want to work on. As part of your second assignment, submit one-page outline where you discuss the nature of the disease, give statistics concerning its prevalence and mortality, and discuss current approaches that are used to tackle this disease.