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ü This notebook illustrates the ability of Mathematica to facilitate conceptual analysis of 
mathematically difficult problems.  

Quantum harmonic oscillator is an important model system taught in upper level physics and 
physical chemistry courses.  In chemistry, quantum harmonic oscillator is often used to as a 
simple, analytically solvable model of a vibrating diatomic molecule.  The model captures well 
the essence of harmonically vibrating bonds, and serves as a starting point for more accurate 
treatments of anharmonic vibrations in molecules. 

The classical harmonic oscillator is a system of two masses that vibrate in quadratic potential 
well (V  k

2
x2) without friction.  The system can be characterized by its harmonic vibrational 

frequency n, force constant k (the second derivative of energy with respect to distance), and the 
reduced mass m.  These three characteristics are related to each other; the frequency depends 
on the force constant (oscillators with stiff bonds have high frequencies) and the reduced mass 
(oscillators with larger reduced masses vibrate at lower frequencies).  The classical frequency 

is given as   1
2 

 k


  

Our first goal is to solve the Schrødinger equation for quantum harmonic oscillator and find out 
how the energy levels are related to the harmonic frequency.  Thus, we need to rewrite the 
harmonic potential in terms of the frequency and the reduced mass. 

In[2]:= Remove"Global`"
In[3]:=  Express the force constant in terms of the reduced mass and harmonic frequency 

kharm  Solve  1

2 


k


, k  Flatten

Out[3]= k  4 2  2

In[4]:=  Classical harmonic potential for the harmonic

oscillator in terms of the force constant k is: 
Vquad 

k

2
x2 ;

In[5]:=  Classical harmonic potential for the harmonic

oscillator in terms of the reduced mass and frequency is: 
Vho  Vquad . kharm

Out[5]= 2 2 x2  2

ü The Schrødinger equation contains the Hamiltonian, which is a sum of the quantum mechanical 
kinetic energy operator and the quantum mechanical potential energy operator.  The quantum 
mechanical kinetic energy operator in one dimension can be easily derived from the quantum 



mechanical momentum operator (p

 = -i h

2 p
 ∂

∂ x
) by recalling the that the relationship between the 

kinetic energy and the momentum is: Ekin =
m v

2

2
=

p
2

2 m
.  In the case of harmonic oscillator, the 

action of a quantum mechanical potential operator is identical to the multiplication with the 
classical potential.  

In[6]:=  Hamiltonian for the Quantum Harmonic Oscillator: H

 H


kin  H


pot 

Hf  
h2

8  2
Dtf, x, 2  Vho  f

Out[6]= 2 f 2 x2  2 
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In[7]:=  Solving the Vibrational Schrødinger Equation: H

  E  

VibrWF  DSolve Hx  Energyv  x, x, x
Out[7]= x  C2 ParabolicCylinderDh   2 Energyv
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,
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2 h 

,
2 2  x  
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In[8]:=  Consider solutions with real variables only 
solnHerm  FunctionExpandx . VibrWF . C2  0

Out[8]= 2
h 2 Energyv

4 h  
2 2 x2  

h C1 HermiteHh   2 Energyv
2 h 

,
2  x  

h


In[9]:=  Obtain allowed energies by restricting Hermite polynomials to integer orders 
Env  Solve2 Energyv  h 

2 h 
 0  v, Energyv

EnHO  TableEnergyv . Env, v, 0, 2  Flatten

Out[9]= Energyv  1
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ü We see that the concept of quantized vibrational energy states (v = 0, 1, 2, 3 ... ) arises naturally 
from the discrete spectrum of physically realistic eigenvalues of the solution to the vibrational 
Schrødinger equation.  This spectrum can be experimentally probed using infrared 
spectroscopy.  

In[11]:=  General vibrational wavefunction 
v, x  SimplifysolnHerm . Env  Flatten

Out[11]= 2v2  2 2 x2  

h C1 HermiteHv, 2  x  
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In[12]:=  Integration constant is determined by requiring that 

2x  1 

c0v, x : SolveIntegrateLastv, x2, x, , , Assumptions 
 

h
 0  1, C1

vxv, x : v, x . Lastc0v, x
In[14]:=

 Some of the wave functions are 
vx  FullSimplifyTablev, x . Lastc0v, x, v, 0, 2   Flatten;
gv  GridPartitionTablev, v, 0, 2, 1, Spacings  0, 2;
gwf  GridPartitionvx, 1;
gho  GridPartitionEnHO, 1, Spacings  0, 2;
GridPartitiongv, gwf, gho, 3, Frame  All

Out[18]=
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In[19]:=  Verify that the ground state wavefunction is indeed

the same as expressed via  in the traditional treatment 
0x  0, x . Lastc00, x . 

2  2x2 

h
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2
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4 2

Out[19]=  2 
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ü Next we plot the vibrational energy levels and associated wavefunctions for carbon monoxide 
molecule.  Because of its chemical stability and permanent dipole moment, the vibrational 
spectrum of CO is experimentally well characterized.  For consistency with the traditional 
infrared nomenclature, the energy on the y-axis is expressed in wavenumber (cm -1) units.  The 
internuclear distance on the x-axis is in meters with the equilibrium internuclear distance set to 
zero.

In[20]:=  PhysicalConstants`

 Planck Constant h in appropriate units is: 

h  PlanckConstant . Joule 
Kilogram 100 cm2

Second2


Second

cm2 Kilogram
;

 Reduced mass of carbon monoxide in kilograms is: 
 

12 16

12  16
ProtonMass

1

Kilogram
;

 Experimental harmonic frequency in wavenumber units is: 
waven  2168 cm1 cm;
 Harmonic frequency in appropriate cm units is: 
  waven SpeedOfLight . Meter  100 cm Second

cm
;

 Square of the speed of light in appropriate cm units is: 

cc  SpeedOfLight2 . Meter  100 cm 
Second2

cm2
;

 Bond force constant in appropriate units is: 
fc  k . kharm;

ü The first five energy levels and wave functions are shown below.  Note that the magnitude of 
each of the wavefunctions is scaled arbitrarily to fit below the next energy level.  The spacing 
between the energy levels is not scaled and corresponds to the experimental harmonic 
frequency ( 2168 cm1 ).

In[29]:= PlotEvaluate Append Table3 102 vxv, x  v 
1

2
waven, v, 0, 4 , 0.006 cc fc x2

2
,

x, 1.5 109, 1.5 109, Filling  Tablev  v 
1

2
waven, v, 1, 5, AxesLabel  x , "E"

Out[29]=

4 QUantHO_Waven.nb



The first five energy levels and squares of associated wave functions are shown below.  Note 
that the magnitude of each of the squared wavefunctions is scaled arbitrarily to fit below the 
next energy level.  Recall that the square of the wavefunction gives the probability; the plot 
below thus shows probability distributions in different vibrational states.  For example, the 
most probable bond distance in the ground state CO corresponds to the equilibrium distance at 
the bottom of the potential well.   

In[30]:=

Plot

Evaluate Append Table1.4 106 vxv, x vxv, x  v 
1

2
waven, v, 0, 4 , 0.006 cc fc x2

2
,

x, 1.5 109, 1.5 109, Filling  Tablev  v 
1

2
waven, v, 1, 5,

AxesLabel  x, "E", PlotRange  All

Out[30]=
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