Preparation for the exam 2

Chem112L, Spring 2009 Exam dates: Monday, June, 8 and Wednesday, June 10

This exam focuses on structure determination by modeling and NMR, protein-ligand interactions as studied by spectrophotometry, and crystallization / diffraction analysis of macromolecules. I expect that you know the basic material from the three previous experiments as well. I intend to have a mix of knowledge-showing essay-type, problem-solving, and multiple-choice questions. Knowledge of the following helps you in preparing for the exam:

- 1. Physical principles behind each of the molecular process
 - a. Forces determining conformations of small molecules
 - b. Ligand binding to macromolecules
 - c. Protein crystallization
- 2. Physical principles behind each of the observation/detection methods
 - a. X-ray diffractiometry
 - b. UV absorption spectroscopy, design of UV-vis spectrophotometer
 - d. Nuclear magnetic resonance detection of nuclei: chemical shift
 - e. NMR as a tool to study molecular structures: coupling, TOCSY, NOE
 - f. Molecular modeling with computers: MC, MD, and conformational analysis
- 3. Theoretical description of conformational equilibria, and ligand binding
 - a. Estimation of thermodynamic parameters from experimental data
 - b. Dissociation constant in relation to equilibrium concentrations
 - c. The harmonic oscillator as a simple model for the chemical bond
 - d. Description of molecular structures in terms of potential energy surfaces
 - e. Minimization, conformational search, and Monte Carlo sampling
 - f. Calculation of observable macroscopic properties from properties of components
 - g. Partition function and it's relationship to average energy
 - h. Relationships between free energy, enthalpy, entropy and heat capacity
- 4. Structural and functions concepts pertaining to ligand binding and protein function
 - a. Biological function and catalytic mechanism of lysozyme
 - b. Structure of peptides and proteins
 - c. Solvatochromic shifts in UV-Vis spectra

5. Instrumentation

- a. Basic design and operation of a X-ray diffractiometers and synchrotrons
- b. Basic design and operation of a dual-beam UV spectrophotometer
- c. Basic design and operation of a FT-NMR spectrometer
- 6. Broader applications of methods covered; other approaches to study these phenomena
 - a. Using circular dichroism and mass spectrometry to study ligand binding
 - b. Other methods to ligand binding
 - c. Other methods to study conformation of small molecules
- 7. Practical aspects of each of the experiments and computations
 - a. Why such wavelengths and cuvettes

- c. Why such concentrations, pH, salts, buffers, etc
- d. Why such simulation parameters and computational protocols

8. Data analysis.

- a. Understand why we used such model equations for fitting
- b. Understand the meaning of each of the fitting parameters
- c. Understand the measures of quality of data and fitting
- d. Understand the workflow of scientific data analysis programs such as *Mathematica*
- e. Understand how to analyze 2D NMR spectra
- f. Understand how to interpret 2D X-ray diffraction data
- g. Understand how to interpret 3D electron density maps

9. Miscellaneous

- a. How to derive equations for association/dissociation equilibrium
- b. How to interpret and use molecular force fields
- c. How to estimate fitting parameters: you may need a calculator
- d. How to make solutions: you may need a calculator

Answers to many of the questions require substantial thinking. Memorizing all the material may not be the best way to study for this exam.