Microsecond Folding of the Cold Shock Protein Measured by a Pressure-Jump Technique

Discussion questions: may be asked on the in-class portion of the exam

- 1) Describe some of the goals of authors of the present paper
- 2) What are cold shock proteins?
- 3) How can one experimentally identify a protein as a cold shock protein?
- 4) Why is the kinetics of cold shock proteins relatively easy to study?
- 5) What contributions to the field of protein folding were made by the early (1970's) stopped-flow studies?
- 6) Why is photochemical triggering of a folding reaction suitable for the study of folding of redox enzymes such as cytochrome c, but not others, such as HIV protease?
- 7) What happens if a solution of unfolded protein is compressed such that the pressure increases significantly?
- 8) What happens is a solution of folded protein is compressed such that the pressure increases significantly?
- 9) What happens is a solution of unfolded protein is expanded such that the pressure decreases significantly?
- 10) Why does reaction volume decrease as proteins unfold even though intuitively the unfolded protein is larger than the folded protein?
- 11) What is the normal sea-level air pressure in bars?
- 12) What is a typical air pressure in car tires (hint: 1 bar = 14.5 psi)
- 13) What was the magnitude of pressure change in this work?
- 14) What is the advantage of large pressure jumps over smaller pressure jumps?
- 15) What is equation 1a good for?
- 16) In your PChem textbooks, you normally see that $\Delta G = \Delta H T\Delta S$. However, equation 2 has additional terms besides ΔH and $T\Delta S$. Why?
- 17) What are piezoelectric crystals?
- 18) What is kaptan (kapton)
- 19) What is the purpose of the sapphire ring in the pressure-jump apparatus?
- 20) What signal was used to monitor protein folding and unfolding?
- 21) What is transition state theory?
- 22) What is the relationship between the Boltzmann constant and universal gas constant R?
- 23) What is the difference between Eq. 6 and Eq. 2?
- 24) Explain what is shown in Figures 2A and 2C.
- 25) What can we say about the change in reaction volume based on Fig 2B?
- 26) Explain the purpose of Fig 3 (A-D)
- 27) What is the effect of guanidinium hydrochloride on protein stability at constant temperature?
- 28) What is the importance of Figure 4C?
- 29) Briefly compare the folding behavior of Phe27Ala mutant and the wild-type protein
- 30) What happens to folding rates in 95% ethylene glycol? Why?

Advanced questions: may be asked for take-home exam:

- 1) Why is the kinetics of cold shock proteins relatively easy to study?
- 2) Explain and illustrate the use of photochemical triggering of a folding reaction
- 3) Why does reaction volume decrease as proteins unfold even though intuitively the unfolded protein is larger than the folded protein?
- 4) Derive Eq. 1
- 5) What was the usefulness of studying different Phe -> Ala mutants of CspB?
- 6) What are the advantages of P-jump technique over stopped-flow approach if one wants to know the numeric value of ΔS^{\neq} ?
- 7) What can you say about ΔC_p^{\neq} based on visual inspection of Fig 6B and 6C? Justify your answer.
- 8) What can you learn about the folding and unfolding process based on ΔC_p^{\neq} values?
- 9) Explain in less than 125 words what is enthalpy/entropy compensation and how is this relevant to protein folding
- 10) Explain what authors mean when they say that the activated state of folding of CspB follows Hammond-type behavior.