Entering Gaussian System, Link 0=g03 Initial command: /usr/local/g03/l1.exe /work/gaussian/Gau-7587.inp -scrdir=/work/gaussian/ Entering Link 1 = /usr/local/g03/l1.exe PID= 7588. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2004,2007, Gaussian, Inc. All Rights Reserved. This is the Gaussian(R) 03 program. It is based on the the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. ****************************************** Gaussian 03: EM64L-G03RevE.01 11-Sep-2007 2-Dec-2010 ****************************************** %NProc=1 Will use up to 1 processors via shared memory. %Mem=40MW %Chk=hcn.chk --------------------------------- # MP2/aug-cc-pVTZ Opt MaxDisk=1GW --------------------------------- 1/18=20,38=1/1,3; 2/9=110,17=6,18=5,40=1/2; 3/5=16,6=1,7=10,11=9,16=1,25=1,30=1/1,2,3; 4//1; 5/5=2,38=5/2; 8/6=4,10=1/1; 9/15=2,16=-3/6; 10/5=1/2; 6/7=2,8=2,9=2,10=2/1; 7/12=2/1,2,3,16; 1/18=20/3(3); 2/9=110/2; 6/7=2,8=2,9=2,10=2/1; 99//99; 2/9=110/2; 3/5=16,6=1,7=10,11=9,16=1,25=1,30=1/1,2,3; 4/5=5,16=3/1; 5/5=2,38=5/2; 8/6=4,10=1/1; 9/15=2,16=-3/6; 10/5=1/2; 7/12=2/1,2,3,16; 1/18=20/3(-8); 2/9=110/2; 6/7=2,8=2,9=2,10=2/1; 99//99; --------------------------------------- Hydrogen cyanide: geometry optimization --------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 c n 1 nc2 h 1 hc3 2 hcn3 Variables: nc2 1.15 hc3 1.07 hcn3 180. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.15 estimate D2E/DX2 ! ! R2 R(1,3) 1.07 estimate D2E/DX2 ! ! A1 L(2,1,3,-1,-1) 180.0 estimate D2E/DX2 ! ! A2 L(2,1,3,-2,-2) 180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 7 0 0.000000 0.000000 1.150000 3 1 0 0.000000 0.000000 -1.070000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 C 0.000000 2 N 1.150000 0.000000 3 H 1.070000 2.220000 0.000000 Stoichiometry CHN Framework group C*V[C*(HCN)] Deg. of freedom 2 Full point group C*V Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.498571 2 7 0 0.000000 0.000000 0.651429 3 1 0 0.000000 0.000000 -1.568571 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 44.6645830 44.6645830 Standard basis: Aug-CC-pVTZ (5D, 7F) There are 49 symmetry adapted basis functions of A1 symmetry. There are 12 symmetry adapted basis functions of A2 symmetry. There are 27 symmetry adapted basis functions of B1 symmetry. There are 27 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. 115 basis functions, 173 primitive gaussians, 135 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.9623975698 Hartrees. NAtoms= 3 NActive= 3 NUniq= 3 SFac= 7.50D-01 NAtFMM= 80 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 115 RedAO= T NBF= 49 12 27 27 NBsUse= 115 1.00D-06 NBFU= 49 12 27 27 Harris functional with IExCor= 205 diagonalized for initial guess. ExpMin= 2.53D-02 ExpMax= 1.14D+04 ExpMxC= 3.89D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (SG) (PI) (PI) Virtual (PI) (PI) (SG) (SG) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (PHI) (PHI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (PHI) (PHI) (DLTA) (DLTA) (SG) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (PHI) (PHI) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -92.9094764215 A.U. after 10 cycles Convg = 0.3692D-08 -V/T = 2.0022 S**2 = 0.0000 ExpMin= 2.53D-02 ExpMax= 1.14D+04 ExpMxC= 3.89D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 115 NBasis= 115 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 113 NOA= 5 NOB= 5 NVA= 108 NVB= 108 **** Warning!!: The largest alpha MO coefficient is 0.43938579D+02 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 3 to 7 NPSUse= 1 ParTrn=F ParDer=F DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1548327896D-01 E2= -0.4269392665D-01 alpha-beta T2 = 0.9018351500D-01 E2= -0.2642772185D+00 beta-beta T2 = 0.1548327896D-01 E2= -0.4269392665D-01 ANorm= 0.1058843743D+01 E2 = -0.3496650718D+00 EUMP2 = -0.93259141493288D+02 DoAtom=TTT Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. There are 1 degrees of freedom in the 1st order CPHF. Petite list used in FoFDir. MinBra= 0 MaxBra= 3 Meth= 1. IRaf= 0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 1 JSym2E=1. 1 vectors were produced by pass 0. AX will form 1 AO Fock derivatives at one time. 1 vectors were produced by pass 1. 1 vectors were produced by pass 2. 1 vectors were produced by pass 3. 1 vectors were produced by pass 4. 1 vectors were produced by pass 5. 1 vectors were produced by pass 6. 1 vectors were produced by pass 7. 1 vectors were produced by pass 8. 1 vectors were produced by pass 9. Inv2: IOpt= 1 Iter= 1 AM= 2.91D-16 Conv= 1.00D-12. Inverted reduced A of dimension 10 with in-core refinement. End of Minotr Frequency-dependent properties file 721 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (SG) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (PHI) (PHI) (DLTA) (DLTA) (SG) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (PHI) (PHI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -15.59887 -11.29155 -1.23859 -0.81102 -0.58191 Alpha occ. eigenvalues -- -0.49779 -0.49779 Alpha virt. eigenvalues -- 0.02308 0.07164 0.07293 0.07293 0.12761 Alpha virt. eigenvalues -- 0.13672 0.13672 0.14591 0.19798 0.19798 Alpha virt. eigenvalues -- 0.22416 0.26664 0.29393 0.29393 0.30386 Alpha virt. eigenvalues -- 0.30386 0.37483 0.40625 0.43850 0.43850 Alpha virt. eigenvalues -- 0.55023 0.55023 0.56451 0.57978 0.57978 Alpha virt. eigenvalues -- 0.60342 0.65525 0.65525 0.77992 0.85203 Alpha virt. eigenvalues -- 0.87514 0.87514 0.87892 0.87892 0.96351 Alpha virt. eigenvalues -- 1.07299 1.07916 1.07916 1.08635 1.08635 Alpha virt. eigenvalues -- 1.12142 1.12142 1.23857 1.23857 1.25004 Alpha virt. eigenvalues -- 1.34126 1.34126 1.41323 1.59363 1.59363 Alpha virt. eigenvalues -- 1.63401 1.63401 1.65544 1.65544 1.76644 Alpha virt. eigenvalues -- 1.76644 1.88183 1.92777 2.06718 2.07420 Alpha virt. eigenvalues -- 2.07420 2.26805 2.26805 2.39910 2.39910 Alpha virt. eigenvalues -- 2.45175 2.60127 2.95400 2.95400 2.99957 Alpha virt. eigenvalues -- 3.31074 3.31074 3.39051 3.39051 3.43976 Alpha virt. eigenvalues -- 3.43976 3.45603 3.45603 3.72743 3.81314 Alpha virt. eigenvalues -- 3.81314 3.88103 4.21936 4.21936 4.37924 Alpha virt. eigenvalues -- 4.37924 4.52423 4.59247 4.74291 4.74291 Alpha virt. eigenvalues -- 4.97047 4.97047 5.23558 5.23558 5.33483 Alpha virt. eigenvalues -- 5.36445 5.36445 5.51607 5.51607 5.75283 Alpha virt. eigenvalues -- 5.75436 5.75436 6.38677 6.86030 6.86030 Alpha virt. eigenvalues -- 7.00879 14.19090 18.35500 Condensed to atoms (all electrons): 1 2 3 1 C 5.744361 0.654947 0.020198 2 N 0.654947 6.735912 -0.062459 3 H 0.020198 -0.062459 0.294355 Mulliken atomic charges: 1 1 C -0.419506 2 N -0.328400 3 H 0.747906 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 C 0.328400 2 N -0.328400 3 H 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 49.5926 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -3.2978 Tot= 3.2978 Quadrupole moment (field-independent basis, Debye-Ang): XX= -11.9627 YY= -11.9627 ZZ= -9.5287 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.8113 YY= -0.8113 ZZ= 1.6227 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -8.1253 XYY= 0.0000 XXY= 0.0000 XXZ= -0.4384 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.4384 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -12.4826 YYYY= -12.4826 ZZZZ= -34.8573 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -4.1609 XXZZ= -9.1533 YYZZ= -9.1533 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.396239756982D+01 E-N=-2.654096499353D+02 KE= 9.270094481237D+01 Symmetry A1 KE= 8.730837708593D+01 Symmetry A2 KE=-5.101624502941D-51 Symmetry B1 KE= 2.696283863219D+00 Symmetry B2 KE= 2.696283863219D+00 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 0.000000000 -0.041688441 2 7 0.000000000 0.000000000 0.037053166 3 1 0.000000000 0.000000000 0.004635275 ------------------------------------------------------------------- Cartesian Forces: Max 0.041688441 RMS 0.018655798 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.037053166 RMS 0.018670986 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 A1 A2 R1 1.34568 R2 0.00000 0.37230 A1 0.00000 0.00000 0.16000 A2 0.00000 0.00000 0.00000 0.16000 Eigenvalues --- 0.16000 0.16000 0.37230 1.34568 RFO step: Lambda=-1.07698508D-03. Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00974271 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.17319 0.03705 0.00000 0.02751 0.02751 2.20070 R2 2.02201 -0.00464 0.00000 -0.01241 -0.01241 2.00959 A1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.037053 0.000450 NO RMS Force 0.018671 0.000300 NO Maximum Displacement 0.014204 0.001800 NO RMS Displacement 0.009743 0.001200 NO Predicted change in Energy=-5.389836D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.007043 2 7 0 0.000000 0.000000 1.157516 3 1 0 0.000000 0.000000 -1.070473 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 C 0.000000 2 N 1.164559 0.000000 3 H 1.063431 2.227990 0.000000 Stoichiometry CHN Framework group C*V[C*(HCN)] Deg. of freedom 2 Full point group C*V Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.506320 2 7 0 0.000000 0.000000 0.658239 3 1 0 0.000000 0.000000 -1.569751 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 43.8053850 43.8053850 Standard basis: Aug-CC-pVTZ (5D, 7F) There are 49 symmetry adapted basis functions of A1 symmetry. There are 12 symmetry adapted basis functions of A2 symmetry. There are 27 symmetry adapted basis functions of B1 symmetry. There are 27 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. 115 basis functions, 173 primitive gaussians, 135 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.7331269908 Hartrees. NAtoms= 3 NActive= 3 NUniq= 3 SFac= 7.50D-01 NAtFMM= 80 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 115 RedAO= T NBF= 49 12 27 27 NBsUse= 115 1.00D-06 NBFU= 49 12 27 27 Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (SG) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (PHI) (PHI) (DLTA) (DLTA) (SG) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (PHI) (PHI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -92.9071846848 A.U. after 9 cycles Convg = 0.1554D-08 -V/T = 2.0030 S**2 = 0.0000 ExpMin= 2.53D-02 ExpMax= 1.14D+04 ExpMxC= 3.89D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 115 NBasis= 115 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 113 NOA= 5 NOB= 5 NVA= 108 NVB= 108 **** Warning!!: The largest alpha MO coefficient is 0.43889160D+02 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 3 to 7 NPSUse= 1 ParTrn=F ParDer=F DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1589151043D-01 E2= -0.4312136086D-01 alpha-beta T2 = 0.9221781783D-01 E2= -0.2663098940D+00 beta-beta T2 = 0.1589151043D-01 E2= -0.4312136086D-01 ANorm= 0.1060189058D+01 E2 = -0.3525526158D+00 EUMP2 = -0.93259737300527D+02 DoAtom=TTT Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. There are 1 degrees of freedom in the 1st order CPHF. Petite list used in FoFDir. MinBra= 0 MaxBra= 3 Meth= 1. IRaf= 0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 1 JSym2E=1. 1 vectors were produced by pass 0. AX will form 1 AO Fock derivatives at one time. 1 vectors were produced by pass 1. 1 vectors were produced by pass 2. 1 vectors were produced by pass 3. 1 vectors were produced by pass 4. 1 vectors were produced by pass 5. 1 vectors were produced by pass 6. 1 vectors were produced by pass 7. 1 vectors were produced by pass 8. 1 vectors were produced by pass 9. Inv2: IOpt= 1 Iter= 1 AM= 3.06D-16 Conv= 1.00D-12. Inverted reduced A of dimension 10 with in-core refinement. End of Minotr Frequency-dependent properties file 721 does not exist. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 0.000000000 -0.004249114 2 7 0.000000000 0.000000000 0.005052908 3 1 0.000000000 0.000000000 -0.000803794 ------------------------------------------------------------------- Cartesian Forces: Max 0.005052908 RMS 0.002216928 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.005052908 RMS 0.002558220 Search for a local minimum. Step number 2 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Update second derivatives using D2CorX and points 1 2 Trust test= 1.11D+00 RLast= 3.02D-02 DXMaxT set to 3.00D-01 The second derivative matrix: R1 R2 A1 A2 R1 1.15201 R2 -0.02458 0.38366 A1 0.00000 0.00000 0.16000 A2 0.00000 0.00000 0.00000 0.16000 Eigenvalues --- 0.16000 0.16000 0.38287 1.15279 RFO step: Lambda=-6.28862849D-06. Quartic linear search produced a step of 0.14354. Iteration 1 RMS(Cart)= 0.00244186 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.20070 0.00505 0.00395 0.00067 0.00462 2.20531 R2 2.00959 0.00080 -0.00178 0.00392 0.00214 2.01173 A1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.005053 0.000450 NO RMS Force 0.002558 0.000300 NO Maximum Displacement 0.003791 0.001800 NO RMS Displacement 0.002442 0.001200 NO Predicted change in Energy=-1.213553D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.007479 2 7 0 0.000000 0.000000 1.159522 3 1 0 0.000000 0.000000 -1.072043 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 C 0.000000 2 N 1.167002 0.000000 3 H 1.064564 2.231566 0.000000 Stoichiometry CHN Framework group C*V[C*(HCN)] Deg. of freedom 2 Full point group C*V Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.507461 2 7 0 0.000000 0.000000 0.659541 3 1 0 0.000000 0.000000 -1.572024 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 43.6357786 43.6357786 Standard basis: Aug-CC-pVTZ (5D, 7F) There are 49 symmetry adapted basis functions of A1 symmetry. There are 12 symmetry adapted basis functions of A2 symmetry. There are 27 symmetry adapted basis functions of B1 symmetry. There are 27 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. 115 basis functions, 173 primitive gaussians, 135 cartesian basis functions 7 alpha electrons 7 beta electrons nuclear repulsion energy 23.6873375117 Hartrees. NAtoms= 3 NActive= 3 NUniq= 3 SFac= 7.50D-01 NAtFMM= 80 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 115 RedAO= T NBF= 49 12 27 27 NBsUse= 115 1.00D-06 NBFU= 49 12 27 27 Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (SG) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (PHI) (PHI) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (PHI) (PHI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -92.9066827030 A.U. after 7 cycles Convg = 0.6921D-08 -V/T = 2.0031 S**2 = 0.0000 ExpMin= 2.53D-02 ExpMax= 1.14D+04 ExpMxC= 3.89D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 3 115 NBasis= 115 NAE= 7 NBE= 7 NFC= 2 NFV= 0 NROrb= 113 NOA= 5 NOB= 5 NVA= 108 NVB= 108 **** Warning!!: The largest alpha MO coefficient is 0.43733094D+02 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 3 to 7 NPSUse= 1 ParTrn=F ParDer=F DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1596452702D-01 E2= -0.4319638328D-01 alpha-beta T2 = 0.9259620457D-01 E2= -0.2666744488D+00 beta-beta T2 = 0.1596452702D-01 E2= -0.4319638328D-01 ANorm= 0.1060436353D+01 E2 = -0.3530672154D+00 EUMP2 = -0.93259749918411D+02 DoAtom=TTT Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. There are 1 degrees of freedom in the 1st order CPHF. Petite list used in FoFDir. MinBra= 0 MaxBra= 3 Meth= 1. IRaf= 0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 1 JSym2E=1. 1 vectors were produced by pass 0. AX will form 1 AO Fock derivatives at one time. 1 vectors were produced by pass 1. 1 vectors were produced by pass 2. 1 vectors were produced by pass 3. 1 vectors were produced by pass 4. 1 vectors were produced by pass 5. 1 vectors were produced by pass 6. 1 vectors were produced by pass 7. 1 vectors were produced by pass 8. 1 vectors were produced by pass 9. Inv2: IOpt= 1 Iter= 1 AM= 4.22D-16 Conv= 1.00D-12. Inverted reduced A of dimension 10 with in-core refinement. End of Minotr Frequency-dependent properties file 721 does not exist. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 0.000000000 -0.000063686 2 7 0.000000000 0.000000000 0.000060653 3 1 0.000000000 0.000000000 0.000003033 ------------------------------------------------------------------- Cartesian Forces: Max 0.000063686 RMS 0.000029333 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000060653 RMS 0.000030364 Search for a local minimum. Step number 3 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Update second derivatives using D2CorX and points 1 2 3 Trust test= 1.04D+00 RLast= 5.09D-03 DXMaxT set to 3.00D-01 The second derivative matrix: R1 R2 A1 A2 R1 1.08415 R2 -0.00572 0.38917 A1 0.00000 0.00000 0.16000 A2 0.00000 0.00000 0.00000 0.16000 Eigenvalues --- 0.16000 0.16000 0.38912 1.08419 RFO step: Lambda= 0.00000000D+00. Quartic linear search produced a step of 0.01115. Iteration 1 RMS(Cart)= 0.00002183 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.20531 0.00006 0.00005 0.00000 0.00006 2.20537 R2 2.01173 0.00000 0.00002 -0.00003 -0.00001 2.01173 A1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000061 0.000450 YES RMS Force 0.000030 0.000300 YES Maximum Displacement 0.000035 0.001800 YES RMS Displacement 0.000022 0.001200 YES Predicted change in Energy=-1.705872D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.167 -DE/DX = 0.0001 ! ! R2 R(1,3) 1.0646 -DE/DX = 0.0 ! ! A1 L(2,1,3,-1,-1) 180.0 -DE/DX = 0.0 ! ! A2 L(2,1,3,-2,-2) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.007479 2 7 0 0.000000 0.000000 1.159522 3 1 0 0.000000 0.000000 -1.072043 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 C 0.000000 2 N 1.167002 0.000000 3 H 1.064564 2.231566 0.000000 Stoichiometry CHN Framework group C*V[C*(HCN)] Deg. of freedom 2 Full point group C*V Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.507461 2 7 0 0.000000 0.000000 0.659541 3 1 0 0.000000 0.000000 -1.572024 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 43.6357786 43.6357786 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (SG) (PHI) (PHI) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (PI) (PI) (PHI) (PHI) (DLTA) (DLTA) (SG) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (PHI) (PHI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (PI) (PI) (PHI) (PHI) (DLTA) (DLTA) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -15.60509 -11.29735 -1.23071 -0.81571 -0.58296 Alpha occ. eigenvalues -- -0.49281 -0.49281 Alpha virt. eigenvalues -- 0.02302 0.07152 0.07277 0.07277 0.12749 Alpha virt. eigenvalues -- 0.13487 0.13487 0.14586 0.19500 0.19500 Alpha virt. eigenvalues -- 0.22397 0.26611 0.29396 0.29396 0.30257 Alpha virt. eigenvalues -- 0.30257 0.37484 0.40630 0.43879 0.43879 Alpha virt. eigenvalues -- 0.55001 0.55001 0.56096 0.57867 0.57867 Alpha virt. eigenvalues -- 0.60278 0.65363 0.65363 0.77877 0.85291 Alpha virt. eigenvalues -- 0.87485 0.87485 0.87880 0.87880 0.95871 Alpha virt. eigenvalues -- 1.06824 1.07870 1.07870 1.08738 1.08738 Alpha virt. eigenvalues -- 1.11981 1.11981 1.23561 1.23691 1.23691 Alpha virt. eigenvalues -- 1.34285 1.34285 1.41373 1.58506 1.58506 Alpha virt. eigenvalues -- 1.63548 1.63548 1.65184 1.65184 1.76258 Alpha virt. eigenvalues -- 1.76258 1.87443 1.92113 2.06678 2.06678 Alpha virt. eigenvalues -- 2.07424 2.25812 2.25812 2.40074 2.40074 Alpha virt. eigenvalues -- 2.43553 2.57720 2.95593 2.95593 3.00296 Alpha virt. eigenvalues -- 3.30888 3.30888 3.38988 3.38988 3.43924 Alpha virt. eigenvalues -- 3.43924 3.44990 3.44990 3.71029 3.79056 Alpha virt. eigenvalues -- 3.79056 3.87652 4.21798 4.21798 4.35937 Alpha virt. eigenvalues -- 4.35937 4.50063 4.61570 4.74243 4.74243 Alpha virt. eigenvalues -- 4.96590 4.96590 5.22632 5.22632 5.33300 Alpha virt. eigenvalues -- 5.36833 5.36833 5.49379 5.49379 5.72511 Alpha virt. eigenvalues -- 5.74000 5.74000 6.35771 6.81992 6.81992 Alpha virt. eigenvalues -- 6.94229 14.20845 17.78933 Condensed to atoms (all electrons): 1 2 3 1 C 5.725986 0.652311 0.035499 2 N 0.652311 6.747852 -0.063690 3 H 0.035499 -0.063690 0.277920 Mulliken atomic charges: 1 1 C -0.413797 2 N -0.336474 3 H 0.750271 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 C 0.336474 2 N -0.336474 3 H 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 50.1861 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -3.3010 Tot= 3.3010 Quadrupole moment (field-independent basis, Debye-Ang): XX= -12.0341 YY= -12.0341 ZZ= -9.5168 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.8391 YY= -0.8391 ZZ= 1.6782 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -8.1531 XYY= 0.0000 XXY= 0.0000 XXZ= -0.4444 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.4444 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -12.6653 YYYY= -12.6653 ZZZZ= -35.4301 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -4.2218 XXZZ= -9.2890 YYZZ= -9.2890 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.368733751173D+01 E-N=-2.647692002728D+02 KE= 9.261602430628D+01 Symmetry A1 KE= 8.725932732715D+01 Symmetry A2 KE= 4.818633047509D-52 Symmetry B1 KE= 2.678348489568D+00 Symmetry B2 KE= 2.678348489568D+00 Final structure in terms of initial Z-matrix: C N,1,nc2 H,1,hc3,2,hcn3 Variables: nc2=1.16700195 hc3=1.0645636 hcn3=180. 1\1\GINC-KALEV\FOpt\RMP2-FC\Aug-CC-pVTZ\C1H1N1\KALJU\02-Dec-2010\0\\# MP2/aug-cc-pVTZ Opt MaxDisk=1GW\\Hydrogen cyanide: geometry optimizati on\\0,1\C,0.,0.,-0.0074794493\N,0.,0.,1.1595224986\H,0.,0.,-1.07204304 93\\Version=EM64L-G03RevE.01\State=1-SG\HF=-92.9066827\MP2=-93.2597499 \RMSD=6.921e-09\RMSF=2.933e-05\Thermal=0.\Dipole=0.,0.,-1.1898703\PG=C *V [C*(H1C1N1)]\\@ IN-LAWS ARE LIKE SEEDS. YOU DON'T NEED THEM BUT THEY COME WITH THE TOMATO. Job cpu time: 0 days 0 hours 5 minutes 2.2 seconds. File lengths (MBytes): RWF= 23 Int= 0 D2E= 0 Chk= 11 Scr= 1 Normal termination of Gaussian 03 at Thu Dec 2 09:19:14 2010.