Midterm I Guide for Chem109C (Kahn, Spring 2005)

Midterm I will be held on Tuesday, April 19th, 5–6:20 PM in Chem1179.

In general, exam questions are based on topics that we covered in the lectures. However, in some cases the textbook provides more detailed examples of these topics and you are expected to be familiar with this material as well. Topics covered in quizzes and vitamin problems may be revisited in the exam. Furthermore, I anticipate that you are familiar with basic concepts of organic nomenclature, stereochemistry, and reactivity that were taught in Chem 109A and Chem109B.

The exam questions are designed to test your knowledge and understanding of the following topics:

Molecular Orbital Theory

Bonding, nonbonding, and antibonding orbitals

Drawing molecular orbital diagrams

Recognizing HOMO and LUMO orbitals in ground state molecules

Description of chemical reactions as flow or electrons from one orbital to another

Electron delocalization

Stability of allyl cation; reactions of allyl halides

Conjugated vs. non-conjugated π systems

Properties of the amide bond

Ultraviolet Spectroscopy

Lambert-Beer law

 $n \to \pi^*$ and $\pi \to \pi^*$ transitions

Effect of conjugation in π system on λ_{max}

Solvatochromic shifts

MO-based explanation for the blue shift in $n \to \pi^*$ transition in carbonyl compounds

Pericyclic Reactions

Distinction between three kinds of pericyclic reactions

Frontier orbitals and orbital symmetry considerations, excited state HOMO

Thermal and photochemical reactions.

MO description of cycloaddition reactions

Diels-Alder reaction, prediction of product stereochemistry

Effect of electron-withdrawing substituents in dienophile on reaction rate

Electrocyclic reactions, prediction of product stereochemistry

Woodward-Hoffman rules for electrocyclic reactions.

Sigmatropic rearrangments, recognizing breaking bonds, forming bonds

Cope rearrangement: writing product structures (no stereochemistry required)

TE-AC mnemonic for selection rules

Synthetic utility of pericyclic reactions, simple retrosynthetic analysis

Carbohydrates

Structural aspects:

General formula and functional groups

Classification based on number of carbons

Classification based on the nature of the carbonyl functionality

Classification based on the extent of polymerization (mono-, di-, oligo-, polysaccharides)

Classification into D- and L-isomers

Fisher projections, R, S nomenclature

Enantiomers, diastereomers, epimers

Structure of D-glyceraldehyde and L-glyceraldehyde

Structures of D-ribose, D-glucose, D-mannose, D-galactose and D-fructose (open chain)

Structures of D-ribose, D-glucose, D-mannose, D-galactose and D-fructose (cyclic hemiacetal form both in Fisher and Haworth projections)

Aldonic acids and aldaric acids

Nomenclature of disaccharides: how to specify the linkage

Be able to recognize simple disaccharides: maltose, cellobiose, trehalose, and lactose

Chemical reactions:

Oxidative chemistry of the aldehyde functionality: aldonic acids

Oxidative chemistry of the primary alcohol functionality: aldaric acids

Tollens test with aldoses and ketoses; enolization of ketoses

Reductive chemistry of the aldehyde functionality

Osazone formation

Nucleophilic addition to carbonyl carbon;

Chain elongation: Kiliani-Fisher synthesis

Chain shortening: Ruff degradation

Formation and properties of hemiacetals

Formation and properties of acetals

Intramolecular hemiacetal formation: cyclic structures

 α,β anomers; conformational stability in glucose

Furanoses and pyranoses

Formation of disaccharides

Reducing and non-reducing disaccharides

Alkylation of free hydroxyl groups with methyl iodide

Analysis and properties:

Chiral properties of polyhydroxyaldehydes

Chiral properties of aldonic acids

Chiral properties of aldaric acids

Historic importance of osazones

Identification of monosaccharides (e.g. Fisher's proof of glucose structure)

Mutarotation as tool to distinguish hemiacetals from acetals

Determination of ring size via methylation analysis

Determination of disaccharide structures via methylation analysis

Amino acids

```
α-aminocarboxylic acids as a special group of amino acids
General structure of \alpha-aminocarboxylic acids
D, L nomenclature
R, S nomenclature
Names and structures of:
   glycine,
   alanine,
   serine,
   cysteine,
   aspartic acid,
   glutamic acid,
   asparagine,
   glutamine,
   phenylalanine,
   tyrosine, and
   lysine.
```

Miscellaneous

Favoskii rearrangement

Fenton reagent

Distinction between $S_{N}1$, $S_{N}2$, and nucleophilic addition mechanisms