Midterm II Guide for Chem109C (Kahn, Spring 2007)

Midterm II will be held on Wednesday, May 30th, 10–10:50 AM in Chem1179.

In general, exam questions are based on topics that we covered in the lectures since the first midterm. However, in some cases the textbook provides additional or more detailed examples of these topics and you are expected to be familiar with this material as well. Topics covered in guizzes and vitamin problems may be revisited in the exam. Furthermore, I anticipate that you are familiar with basic concepts of organic nomenclature, stereochemistry, and reactivity that were taught in Chem 109A and Chem109B.

The exam questions are designed to test your knowledge and understanding of the following topics:

Amino Acids, Peptides and Proteins

```
α-aminocarboxylic acids as a special group of amino acids
General structure of \alpha-aminocarboxylic acids
D. L nomenclature
R. S nomenclature
Names and structures of:
   glycine,
   alanine,
   valine,
   serine,
   cysteine,
   aspartic acid.
   glutamic acid,
   asparagine,
   glutamine,
   phenylalanine,
   tyrosine,
   tryptophan, and
```

Acid-base properties of amino acids

lysine.

Calculation of pI in amino acids and peptides (no more than three ionizable groups)

Separation of amino acids by electrophoresis and ion-exchange chromatography

Visualization of amino acids with ninhydrin

Hell-Vollhard-Zelinski synthesis of amino acids

Resolution of racemic mixture of amino acids with aminoacylase enzyme

Formation and structure of the peptide bond

Biological function of peptides

Structure, use, and hydrolysis of aspartame

Chemical synthesis of peptides: protecting and activation strategies

Merrifield solid-phase peptide synthesis

Formation and cleavage of disulfide bonds

Analysis of amino acid composition of peptides and proteins

Determination of N-terminal amino acid with phenyl isothiocyanate

Partial enzymatic hydrolysis with trypsin and chymotrypsin

Deduction of peptide sequences based on above analytical methods

Main secondary structure elements of proteins: α -helix and β -sheet

Interactions responsible for formation of tertiary and quaternary structure

Catalysis

Reasons for Biocatalysis in living cells

Reaction coordinate diagrams

The concept of transition state

Lowering the energy of transition state as means of catalysis

Intramolecular reactions, effective molarities, and catalysis by approximation

Chemical mechanisms of catalysis: principles and examples of:

Acid base catalysis

Covalent catalysis (nucleophilic catalysis)

Metal ion catalysis

Electrostatic catalysis

Catalytic mechanisms in

Ketosteroid isomerase

Haloalkane dehalogenase

Alcohol dehydrogenase

Chorismate mutatse

Chymotrypsin, structure and the function of the catalytic triad

Coenzymes

Catabolism and anabolism as the two sides of metabolism

Apoenzyme, cofactors and holoenzyme

Vitamins and their relation to coenzymes

Structures of niacin (vitamin B3) and nicotinamide

Structure and chemistry of the redox cofactor NAD⁺/NADH

Structure of chemistry of the redox cofactor NADP⁺/NADPH

Mechanism of stereospecific oxidation of alcohols by alcohol dehydrogenase

Structure of flavin, riboflavin (vitamin B2), FAD, and FADH₂

FAD as oxidizing cofactor toward organic substrates with saturated alkyl groups

FMN as oxidizing cofactor toward NADH

Mechanism of oxidation of dihydrolipoate by FAD

Mechanism of activation of oxygen by FADH₂

Mechanism of reductive and oxidative half-reactions in cholesterol oxidase

Difference between oxidases and mono-oxygenases

Structure of tetrahydrofolate (THF) and Dihydrofolate (DHF)

Structure and mechanism of synthesis of methionine

Mechanism of thymidylate synthase

Inactivation of thymidylate synthase by 5-fluorouracil in cancer therapy

Lipids

General properties and biological roles of lipids

Classification into simple and complex lipids

Fatty acids: systematic nomenclature

Fatty acids: structures and common names of palmitic, and stearic acids

Physical properties of saturated fatty acids

Monounsaturated fatty acids: structure and properties of oleic and elaidic acids

Structure and physiological significance of polyunsaturated fatty acids

Oxidation of polyunsaturated fatty acids

Fats: structure and function in living organisms

Glycerophospholipids: general structure and function

Waxes and sphingolipids: general structure

Structure and function of cholesterol

Structure and function of testosterone

Biological role of estradiol

Synthesis of geranyl pyrophosphate from dimethylallyl pyrophospahate and isopentenyl pyrophosphate

Formation of farnesyl pyrophosphate

Pathways to cholesterol and retilal

Nucleosides, Nucleotides, and Nucleic Acids

Structures of heterocyclic compounds piperidine, pyridine, and imidazole

Structures of purine and pyrimidine

Structures of five common nucleobases

Structures of ribofuranoside and 2'deoxyribofuranoside

Phosphomonoesters, phosphodiesters, and phosphotriesters

Distinction between nucleobases, nucleosides, and nucleotides

Distinction between 3'nucleotides and 5'nucleotides

Complete chemical structures of ATP, GTP, UMP, CTP, TTP

Structure and biological role of cAMP

Biological function of ATP

Thermodynamics of ATP hydrolysis

Coupling of favorable and unfavorable reactions as means to make unfavorable reactions possible

Chemistry of phosphoryl transfer reactions

Biological significance of deoxyribonucleicacid (DNA)

The primary structure of DNA

Miscellaneous

Principles of organic reactivity

Basic instrumental/analytical techniques in organic chemistry (UV-Vis, MS, ...)