Midterm I Study Guide for Chemistry 109C

(Kahn, Spring 2007)

In general, exam questions are based on topics that we covered in the lectures. However, in some cases the textbook provides more detailed examples of these topics and you are expected to be familiar with this material as well. Topics covered in quizzes and vitamin problems may be revisited in the exam. I anticipate that you are familiar with basic concepts of organic nomenclature, stereochemistry, and reactivity that were taught in Chem 109A and Chem109B.

Molecular Orbital Theory

Acids, bases, electrophiles, nucleophiles: connection with their electronic structure

Familiar examples from Chem 109A, B (addition of HBr to alkenes, hydroboration)

Bonding, nonbonding, and antibonding orbitals

Drawing molecular orbital diagrams

Frontier orbital theory; recognizing HOMO and LUMO orbitals in ground state molecules

Description of chemical reactions as flow or electrons from one orbital to another

Electron delocalization

Stability of the allyl cation; reactions of allyl halides

Conjugated vs. non-conjugated π systems

Conjugation in amide; properties of the amide bond

Properties and molecular orbitals of dienes; the Diels-Alder Reaction

Ultraviolet Spectroscopy

Lambert–Beer law (not covered in lecture; you should know it!)

 $n \to \pi^*$ and $\pi \to \pi^*$ transitions

Effect of conjugation in π system on λ_{max}

London dispersion as the main force between nonpolar solute and solvent

Dipole–diple interaction as the force between polar solute and polar solvent

MO-based explanation for the red shift in $\pi \to \pi^*$ transitions in apolar alkenes

MO-based explanation for the blue shift in $n \to \pi^*$ transition in carbonyl compounds

Reactivity due to the α -carbon in carbonyl compounds.

The acidity of the α -hydrogen in different systems

Keto-enol tautomerization

Reactivity of enols and enolates as good nucleophiles

Halogenation at the α -carbon in aldehydes, ketones, and esters

Halogenation at the α -carbon in carboxylic acids

Alkylation of the β -carbon in α , β -unsaturated aldehydes and ketones.

Aldol addition and aldol condensation: basic mechanisms

Claisen condensation of esters: basic mechanism

Possibility of formation of product mixtures in mixed Aldol and Claisen condensations

What is so special about benzyl aldehyde?

Structure and properties of LDA

Modern synthetic strategies for carbon-carbon bond formation using enolate chemistry.

Decarboxylation of 3-oxocarboxylic acids; relevance in biochemistry

Carbohydrates

Structural aspects:

General formula and functional groups

Classification based on number of carbons

Classification based on the nature of the carbonyl functionality

Classification based on the extent of polymerization (mono-, di-, oligo-, polysaccharides)

Classification into D- and L-isomers

Fisher projections, R, S nomenclature

Enantiomers, diastereomers, epimers

Structure of D-glyceraldehyde and L-glyceraldehyde

Structures of D-ribose, D-glucose, D-mannose, D-galactose and D-fructose (open chain)

Structures of D-ribose, D-glucose, D-mannose, D-galactose and D-fructose (cyclic, Haworth)

Aldonic acids and aldaric acids

Nomenclature of disaccharides: how to specify the linkage

Be able to recognize simple disaccharides: maltose, cellobiose, trehalose, lactose, and sucrose

Chemical reactions:

Oxidative chemistry of the aldehyde functionality: aldonic acids

Oxidative chemistry of the primary alcohol functionality: aldaric acids

Tollens test with aldoses and ketoses; enolization of ketoses

Reductive chemistry of the aldehyde functionality

Nucleophilic addition to carbonyl carbon

Chain elongation: Kiliani-Fisher synthesis

Chain shortening: Ruff degradation and Wohl degradation

Formation and properties of hemiacetals

Formation and properties of acetals, oxocarbenium ion mechanisms

Intramolecular hemiacetal formation: cyclic structures

α,β anomers; conformational stability in glucose

Furanoses and pyranoses

Formation of disaccharides

Reducing and non-reducing disaccharides

Acylation of free hydroxyl groups with acetic anhydride

Alkylation of free hydroxyl groups with methyl iodide

Reactions of 1,2-diols with periodic acids

Analysis and properties:

Chiral properties of polyhydroxyaldehydes

Chiral properties of aldonic acids

Chiral properties of aldaric acids

Identification of monosaccharides (e.g. Fisher's proof of glucose structure)

Mutarotation as tool to distinguish hemiacetals from acetals

Determination of ring size via exhaustive methylation analysis

Determination of disaccharide structures via exhaustive methylation analysis