# **ENERGY**

### **ENERGY UNITS**

- Energy: The ability to do work (make something happen)
  - Joule (J)
  - Calorie (cal)
    - The calories on food packages are really kcal
  - Electron Volt (eV)
  - British Thermal Unit (btu)
  - Kilowatt hours (kW·h)

| 1 cal  | 4.184 J                   |
|--------|---------------------------|
| 1 eV   | 1.620×10 <sup>-19</sup> J |
| 1 btu  | 1055 J                    |
| 1 kW·h | 3.600×10 <sup>6</sup> J   |

- Your body gets 8,000 J (1,900 cal = 1.9 kcal) of energy from eating a peanut.
- 60 J of energy are need per second to keep a 60 W appliance running.
- 1 gallon of gas produces 1.32×10<sup>8</sup> J of energy or enough energy to keep a 60 W appliance running for 25 days.

# WORK

- Work (J)
- Work is always a change in energy. How much energy it took to do \_\_\_\_\_\_.



### **POWER**

- Power  $(watt(\frac{J}{s})$  energy per time)
  - Mechanical Power
    - $P = F \times v$ 
      - F = Force (weight  $F = mg \text{ g} = 9.8 \frac{m}{s^2}$ )
      - v = velocity
  - Electrical Power
    - $P = I \times V$ 
      - I = current
      - V = voltage

| Appliance                   | Power   |  |  |
|-----------------------------|---------|--|--|
| T.V.                        | 120 W   |  |  |
| <b>Computer and Monitor</b> | 270 W   |  |  |
| Washing Machine             | 425 W   |  |  |
| Refrigerator                | 725 W   |  |  |
| Dishwasher                  | 1,800 W |  |  |
| Dryer                       | 3,400 W |  |  |

■ The hoover dam on average produces 4.5×10<sup>4</sup> W per hour.

# TYPES OF ENERGY

### **Potential**

- Gravitational
- Stored Mechanical
- Chemical
- Nuclear
- Electrical
- Sound

### **Kinetic**

- Motion
- Electrical
- Radiant
- Thermal
- Sound















# GRAVITATIONAL


### **POTENTIAL ENERGY**

- Energy from position.
- E = mgh
  - g=9.8 $\frac{m}{s^2}$
  - h=height
  - m=mass
- Examples of gravitational energy:



# MOTION KINETIC ENERGY

- Energy from motion.
- $E = \frac{1}{2} m v^2$ 
  - m=mass
  - V=velocity
- Examples of motion energy:



# **ENERGY TRANSFER**

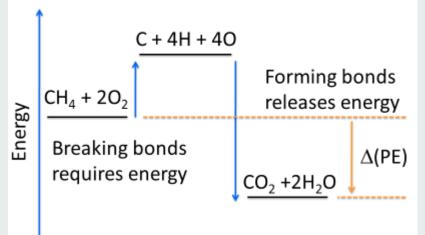
- Law of conservation of energy
  - Energy cannot be created or destroyed



## CHEMICAL **POTENTIAL ENERGY**

- Energy that can be released if a chemical reaction occurs.
- Combustion
  - $2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O$   $\Delta H = -10,941 \frac{kJ}{mol}$

Examples of chemical energy:


$$\Delta H = -10,941 \frac{kJ}{mol}$$







### Combustion of methane



# STORED MECHANICAL

### **POTENTIAL ENERGY**

- Energy stored in object by tension.
  - Spring

• 
$$E = \frac{1}{2}kx^2$$

- K = spring constant
- x = distance from at rest position
- Stretched rubber band







# NUCLEAR POTENTIAL ENERGY

### The energy stored inside the nucleus of an atom.

- $pm_p + nm_n \neq m_{nuclus}$
- $E = mc^2$ 
  - m = mass
  - c = speed of light  $3.00 \times 10^8 \frac{m}{s}$

### Examples of nuclear energy

- Fission (Breaking atoms apart)
  - $^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{141}_{56}Ba + {}^{92}_{36}Kr + 3{}^{1}_{0}n$ 
    - releases 3.5x10<sup>-11</sup> J per reaction (2.1×10<sup>13</sup> J per mole)
  - Fission is what happens in nuclear reactors. Although pollutant are produced, radio active waste is left over.
- Fusion (Joining atoms together)
  - 6D  $\rightarrow$  2<sup>4</sup>He + 2p + 2n
    - releases 3×10<sup>8</sup> kJ per each gram D
  - These are the type of reactions that go on in the sun.
  - In order to get fusion to happen on earth we need to be at high temperatures ( $10^8~{
    m K}$ )

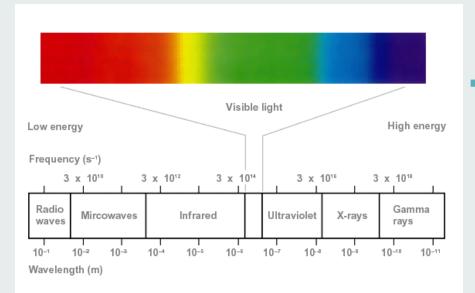


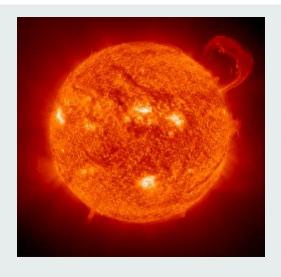
### **ELECTRICAL**

### POTENTIAL OR KINETIC ENERGY

### Potential

- The energy associated with the attractive force between 2 oppositely charged particles
  - $E = \frac{1}{4\pi\varepsilon^{\circ}} \frac{q_1 q_2}{r_{12}}$ 
    - $\epsilon$ ° = vacuum permittivity 8.85 ×  $10^{-12} \frac{C^2}{J \cdot m}$
    - q = charge
    - r = separation


### Kinetic


- The energy generated from the flow of electrical change (electrons)
  - E = VIt
    - V = voltage
    - I = current
    - t = time
- Examples of electrical energy:



# RADIANT KINETIC ENERGY

- The energy in electromagnetic waves.
  - $E = h\nu$ 
    - h plank's constant 6.626×10<sup>-34</sup> J·s
    - Frequency  $v = \frac{c}{\lambda}$ 
      - c speed of light  $3.00 \times 10^{8} \frac{m}{s}$
      - λ wavelength





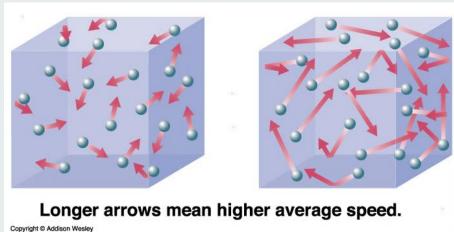

Examples of radiant energy:

### SOUND

### KINETIC AND POTENTIAL ENERGY

- The energy that is moved through substances with longitudinal waves.
  - $E = \frac{a^2 \rho}{2\pi f}$  (E in this expression is energy density or energy per area)
    - a = particle acceleration
    - $\rho = air density$
    - f = frequency of sound
- Examples of sound energy:




# THERMAL KINETIC ENERGY

- Energy that is caused by heat.
  - When thermal energy is applied atoms/molecules move faster.
  - $E = f \frac{1}{2}kT$ 
    - f = degrees of freedom
    - k = Boltzmann's constant 1.381×10<sup>-23</sup>  $\frac{J}{K}$
    - T = temperature

T=Cold

T=Hot

Examples of thermal energy:



# TYPES OF ENERGY

### **Potential**

- Gravitational
- Stored Mechanical
- Chemical
- Nuclear
- Electrical
- Sound

### **Kinetic**

- Motion
- Electrical
- Radiant
- Thermal
- Sound

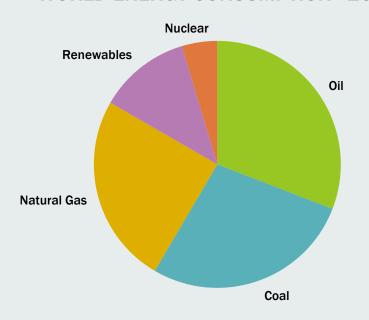








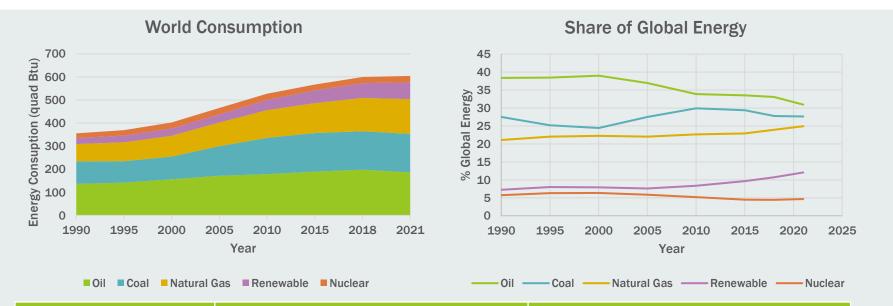







# **WORLD ENERGY**

2021


### **WORLD ENERGY CONSUMPTION - 2021**



| Source of Energy | Percent |  |
|------------------|---------|--|
| Oil              | 31%     |  |
| Coal             | 28%     |  |
| Natural Gas      | 25%     |  |
| Renewables       | 12%     |  |
| Nuclear          | 5%      |  |

# **WORLD ENERGY**

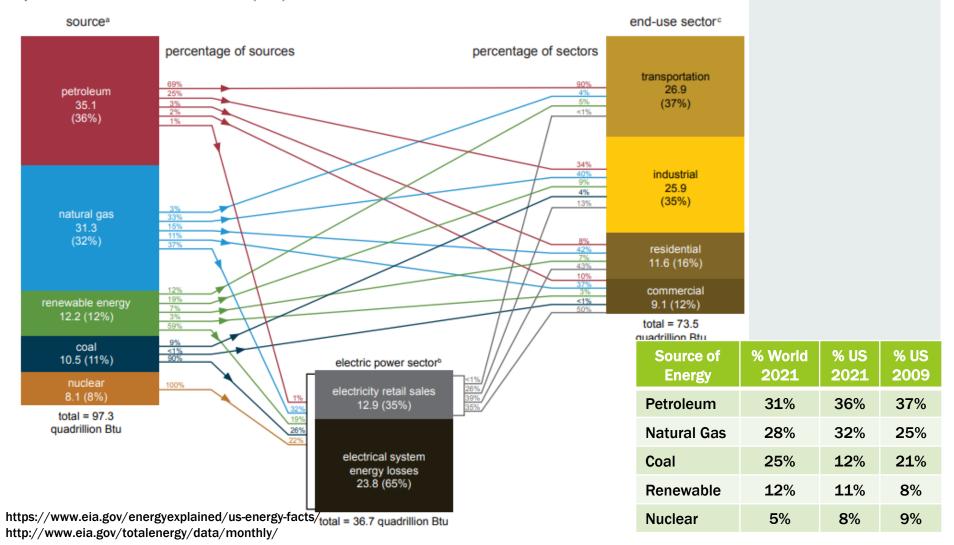
2021



| Source of Energy | Percent Change Since 2018 | Percent Change Since 1990 |
|------------------|---------------------------|---------------------------|
| Oil              | -6.9%                     | -24.0%                    |
| Coal             | -0.5%                     | 0.48%                     |
| Natural Gas      | 3.7%                      | 15.2%                     |
| Renewables       | 11.0%                     | 39.8%                     |
| Nuclear          | 4.9%                      | -23.1%                    |

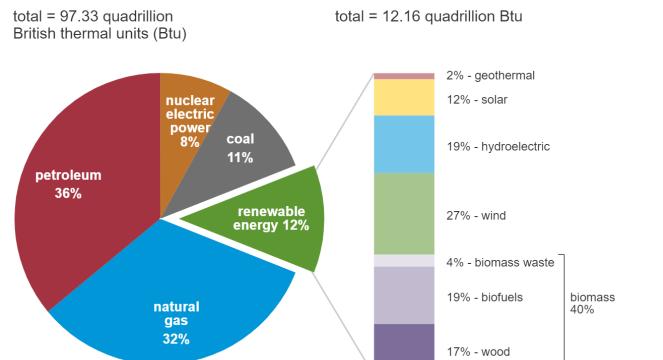
# **WORLD ENERGY**

2022


| Country              | Energy Consumption (Quadrillion Btu) |
|----------------------|--------------------------------------|
| China                | 174.0                                |
| <b>United States</b> | 94.7                                 |
| India                | 35.3                                 |
| Russia               | 32.5                                 |
| Japan                | 16.9                                 |
| Iran                 | 13.5                                 |
| Canada               | 12.3                                 |
| Korea, South         | 12.2                                 |
| Saudi Arabia         | 11.4                                 |
| Germany              | 11.1                                 |

| Country                 | Energy<br>Consumption/person<br>(MBtu) |
|-------------------------|----------------------------------------|
| Qatar                   | 810                                    |
| Singapore               | 627                                    |
| Bahrain                 | 539                                    |
| United Arad<br>Emirates | 493                                    |
| Brunei                  | 461                                    |
| Trinidad and Tobago     | 424                                    |
| Kuwait                  | 399                                    |
| Saudi Arabia            | 309                                    |
| Canada                  | 307                                    |
| Oman                    | 304                                    |
| United States (#12)     | 283                                    |

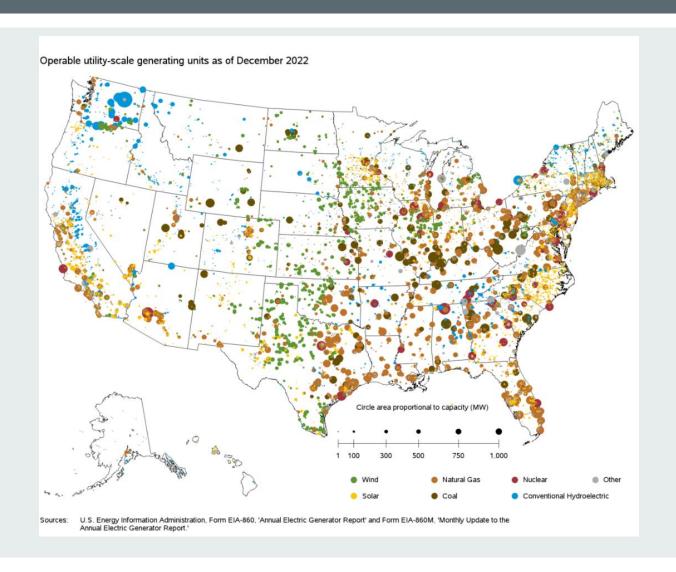
### **US ENERGY**


### U.S. energy consumption by source and sector, 2021

quadrillion British thermal units (Btu)



### **US ENERGY**





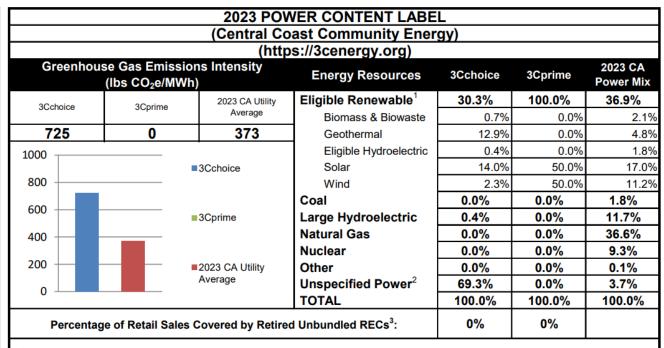

Data source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 1.3 and 10.1, April 2022, preliminary data

Note: Sum of components may not equal 100% because of independent rounding.

# **US ENERGY**



# COMMUNITY CHOICE AGGREGATION




# **Central Coast Community Energy**Plans

- 3Cchoice 31% renewable
  - Default
- 3Cprime 100% renewable
  - \$0.008 \$/KWhr
  - Extra \$4-5 per month

| Project Name           | Source          | Generation<br>Megawatt | Battery<br>Megawatt | Location             | Online Date  | Delivery Term<br>(in Years) |
|------------------------|-----------------|------------------------|---------------------|----------------------|--------------|-----------------------------|
| Coso Geothermal        | Geothermal      | 66.3                   | n/a                 | Inyo County, CA      | January 2022 | 20                          |
| Slate                  | Solar + Storage | 67.5                   | 33.8                | Kings County, CA     | March 2022   | 15                          |
| Mammoth Casa Diablo IV | Geothermal      | 7.0                    | n/a                 | Riverside County, CA | July 2022    | 10                          |
| Mountain View Wind     | Wind            | 33.3                   | n/a                 | Mono County, CA      | July 2022    | 20                          |
| Rabbitbrush            | Solar + Storage | 60.0                   | 12.0                | Kern County, CA      | October 2022 | 15                          |
| Yellow Pine            | Solar + Storage | 75.0                   | 39.0                | Clark County, NV     | July 2023    | 20                          |
| Victory Pass           | Solar + Storage | 100.0                  | 25.0                | Riverside County, CA | March 2024   | 15                          |

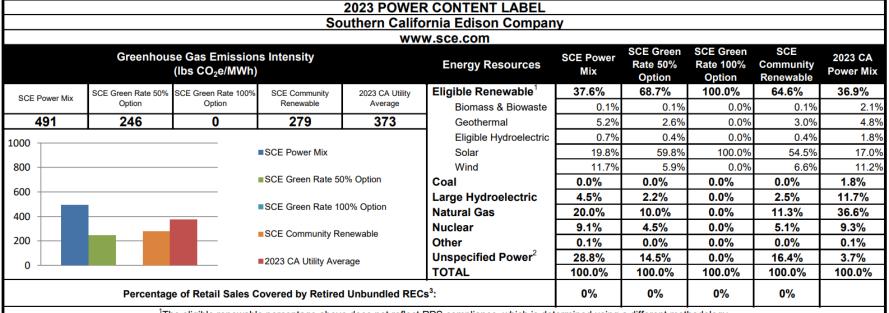
### CENTRAL COAST COMMUNITY ENERGY



<sup>&</sup>lt;sup>1</sup>The eligible renewable percentage above does not reflect RPS compliance, which is determined using a different methodology.

<sup>2</sup>Unspecified power is electricity that has been purchased through open market transactions and is not traceable to a specific generation source.

For specific information about this electricity (Central Coast Community Energy)
portfolio, contact: (831) 641-7222


For general information about the Power Content

Label, visit:

https://www.energy.ca.gov/programs-and-topics/programs/power-source-disclosure-program

<sup>&</sup>lt;sup>3</sup>Renewable energy credits (RECs) are tracking instruments issued for renewable generation. Unbundled renewable energy credits (RECs) represent renewable generation that was not delivered to serve retail sales. Unbundled RECs are not reflected in the power mix or GHG emissions intensities above.

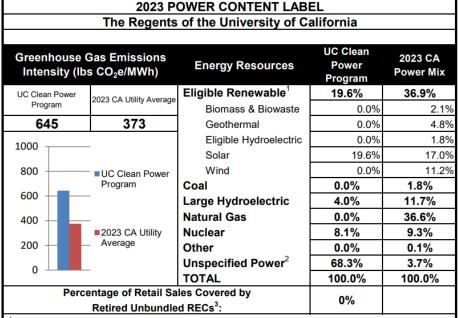
### SOUTHERN CA EDISON



<sup>&</sup>lt;sup>1</sup>The eligible renewable percentage above does not reflect RPS compliance, which is determined using a different methodology.

For specific information about this electricity portfolio, contact:

Southern California Edison Company 1-800-655-4555


For general information about the Power Content Label, visit:

https://www.energy.ca.gov/programs-and-topics/programs/power-source-disclosure-program

<sup>&</sup>lt;sup>2</sup>Unspecified power is electricity that has been purchased through open market transactions and is not traceable to a specific generation source.

<sup>3</sup>Renewable energy credits (RECs) are tracking instruments issued for renewable generation. Unbundled renewable energy credits (RECs) represent renewable generation that was not delivered to serve retail sales. Unbundled RECs are not reflected in the power mix or GHG emissions intensities above.

### **UC REGENTS**



<sup>&</sup>lt;sup>1</sup>The eligible renewable percentage above does not reflect RPS compliance, which is determined using a different methodology.

The unbundled RECs retired in association with UC Clean Power Program's portfolio were procured from eligible renewable sources such as solar, wind, hydroelectric, biowaste, biomass, or geothermal energy. For additional information on unbundled RECs retired in association with the UC Clean Power Program please reach out via email at UC ESP@ucop.edu.

For specific information about this electricity portfolio, contact:

The Regents of the University of California 510-287-3360

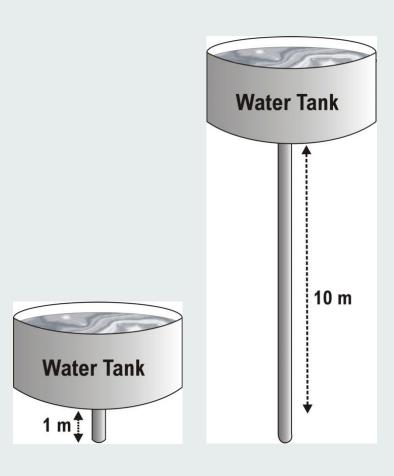
For general information about the Power Content Label, visit: https://www.energy.ca.gov/programs-andtopics/programs/power-source-disclosure-program

<sup>&</sup>lt;sup>2</sup>Unspecified power is electricity that has been purchased through open market transactions and is not traceable to a specific generation source.

<sup>&</sup>lt;sup>3</sup>Renewable energy credits (RECs) are tracking instruments issued for renewable generation. Unbundled renewable energy credits (RECs) represent renewable generation that was not delivered to serve retail sales. Unbundled RECs are not reflected in the power mix or GHG emissions intensities above.

### TOU

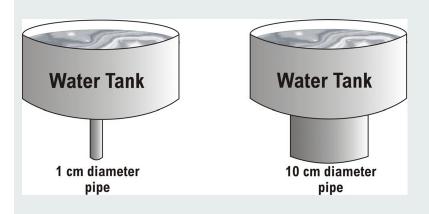
### **Summer (June - Sept.)**




### Winter (Oct.- May)



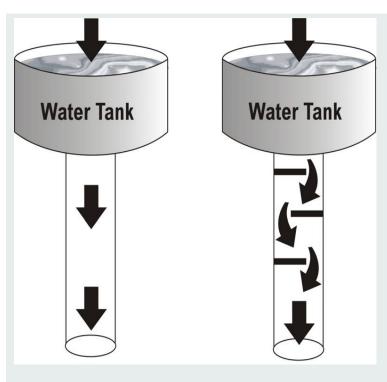
- Summer Cheapest Power
  - 9 pm to 4 pm (\$0.27)
  - Weekend are cheaper than weekdays
- Winter Cheapest Power
  - 9 pm to 8 am (\$0.30)
  - Weekdays and weekends are same price.


### **ELECTRICITY**



- Voltage (volt V): A measure of its electrical potential.
- Which water tower will have water that comes out at a greater pressure?

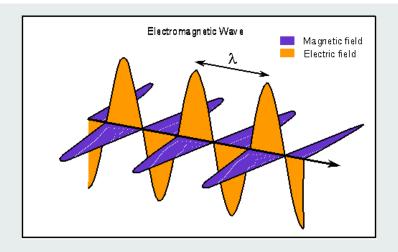
What represents voltage?


### **ELECTRICITY**



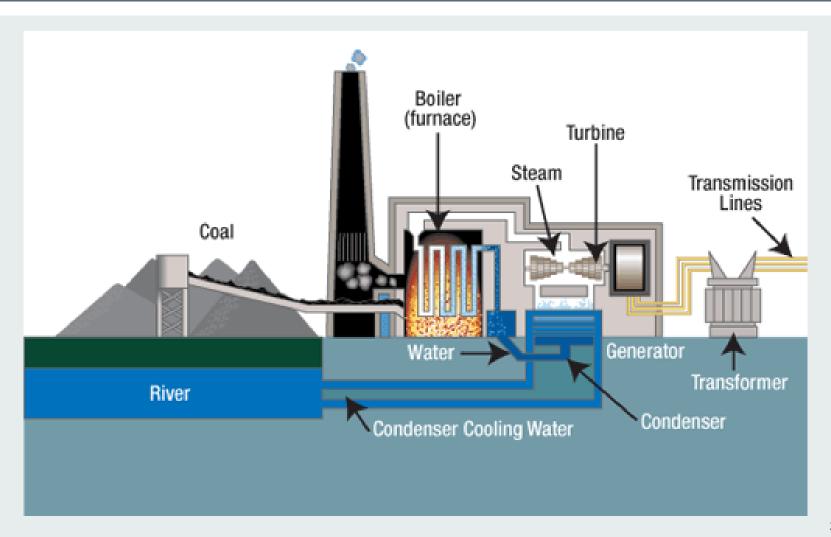
- Current (amps A): The rate of charge flow per time.
- Which water tower will have water come out at a faster rate?

- What represents current?
- Types of Current:

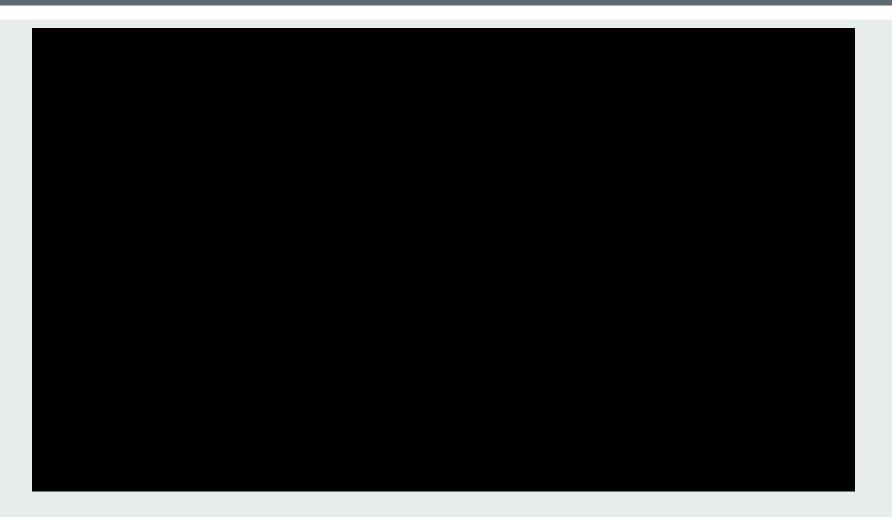

### **ELECTRICITY**



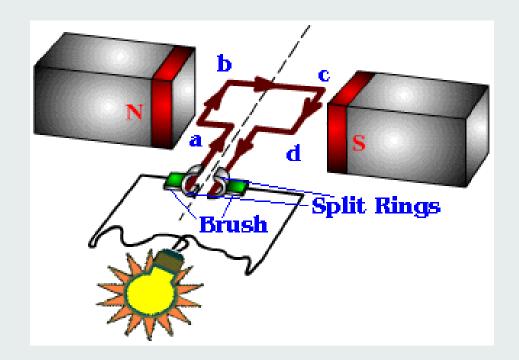
- Resistance (ohms  $\Omega$ ): The amount of resistance a current will encounter.
- Which water tower will have the water encounter more resistance?


What represents resistance?

## **ELECTROMAGNETS**

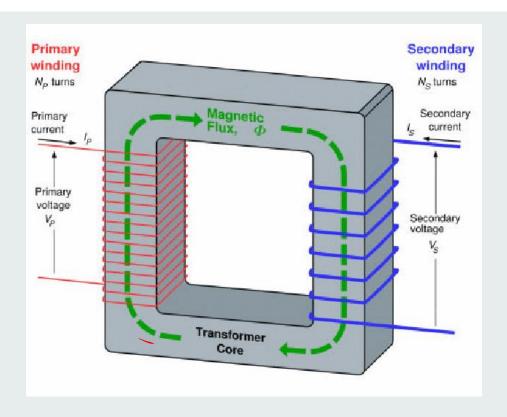



- A changing magnetic field induces a electric field.
- A changing electric field induces a magnetic field.
- Electromagnet: A temporary magnet whose effect is caused by an electric current.


# **ELECTRICAL PLANTS**



# **ELECTROMAGNETS**




# **ELECTRICAL PLANTS**



The University of Colorado has computer simulations for different science concepts. Try this one on generators. http://phet.colorado.edu/en/simulation/generator

# **ELECTRICAL PLANTS**





- Transformer: An electrical device by which alternating current of one voltage is changed to another voltage.
  - The greater the number of coils the greater the voltage.