
CARS & BATTERIES

HOW MANY CARS?

https://knoema.com/infographics/gfwhcg/the-world-s-top-car-owning-co2intrieshttps://w3.unece.org/PXWeb/en/CountryRanking?IndicatorCode=44

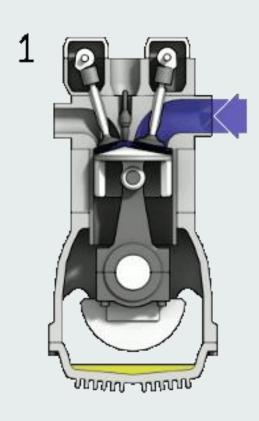
THE FIRST AUTOMOBILE?

- 1769: The first self-propelled vehicle was built
 - Nicolas Cugnot, a French military engineer, developed a steam powered road-vehicle for the French army.
 - Used to haul heavy cannons.
 - Reportedly reached walking speed and carried four tons.

STEAM-POWERED TAXIS

1801: Britain's steam carriages

 Richard Trevithick improved the design of steam engines, making them smaller and lighter with stronger boilers generating more power.



- Powered by coal, used to heat a 180 liter water tank.
- Range of about 15 km (9.3 mi).
- Could carry 8 people. Used as taxis.
- Not a commercial success.
- Expensive to construct.

"Required two men and a bag of coal to do what a horse drawn vehicle could do with one man and a bag of hay."

4 STROKE ENGINE

1876: Nikolau August Otto Developed 4-Stroke engine

- Down Stroke 1: Bulb opens as piston goes down allowing for the intake air/fuel
- Intake valve closes
- Upstroke 1: Piston compress air/fuel mixture
- Down Stroke 2: Called the "Power Stroke" the air/fuel mixture is ignited with a spark, the high temperature increases the pressure forcing the piston down
- Exhaust valve opens
- Upstroke 2: Piston goes up forcing the exhaust out
- Exhaust valve closes

LEGISLATION VS. INNOVATION

- In Britain, the Locomotive Act of 1865 restricted the speed of horseless vehicles to 4 mph in open country and 2 mph in towns.
- The act required three drivers for each vehicle (driver, stoker, red flag man walking 60 yards ahead).

1886 BENZ MOTORWAGON

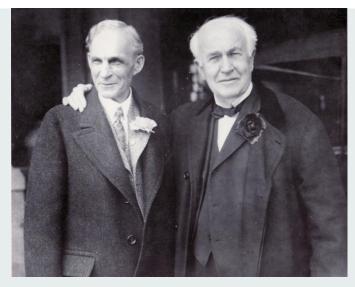
ELECTRIC VEHICLES


Morrison EV

- 1892: William Morrison of Des Moines, Iowa, designs America's first electric car.
- 4 horsepower motor
- 24-cell battery, which weighed 768 lbs (half the vehicle's weight).
- Capable of reaching speeds of up to 14 mph.
- 1896: First Road Traffic Death
 - Bridget Driscoll, a 44-year old mother of two from Croydon, stepped off a curb and was hit by a passing motor car near Crystal Palace in London. She died from head injuries.
 - The driver, Arthur Edsell, was doing just 4 mph at the time.
 - The coroner, returning a verdict of accidental death.
 - "I trust that this sort of nonsense will never happen again."

THE COMPETITION BEGINS

- 1800s: horses were major part of supply chain.
 - Trains for long distance transport, horses for local transport
- 7 million horses in the US in 1860, over 25 million in 1900.


- In 1900, horse density in major urban centers was 426 horses per square mile.
 - Stables on almost every block.
- Over 15,000 horse carcasses per year in city streets.
- Between 800,000 and 1.3 million pounds of manure each day in New York City.

COMPETING TECHNOLOGIES

- 1900: The automobile market is equally divided between the three contenders of steam, gasoline, and electricity.
 - In the USA, of all the cars manufactured, 1,684 are steam-driven,
 1,575 are electric, and 963 are gasoline engines.

Туре	Steam	Electric	Gas
~ Year Invented	1769	1842	1886
Pros	 Only needed water and something to burn usually coal. Quiet Relatively clean 	 Electricity in many houses Easy to drive Clean, quiet, and vibration free No fumes 	 Could go long distances Easy to refill on the road.
Cons	 Needed time to warm up (~30 min) Have to add water often Produce lots of heat 	 Marketed towards women In town driving only Took a while to charge 	Hard to get started (starter)DirtyNoisy

EDISON AND FORD

- Henry Ford worked for Thomas Edison before starting his own company. Edison encouraged Ford to pursue the gas engine.
- 1908: Henry Ford introduces the gasolinepowered Model T Ford at a price of \$850 (~\$20,000 in today's terms).
- Its 10-gallon tank gives it a range of between 125-200 miles.
- 1909: Edison introduces new and improved nickel-flake battery
 - Extends EV range to as much as 100 miles between charges, can be recharged in half the time and lasts up to ten times longer than lead-acid alternatives.
 - Cannot withstand heavy use, requires diligent maintenance.
 - Badly affected by cold weather
 - Very large, and its cost more than tripled that of typical lead-acid batteries.

THE BEGINNING OF THE END FOR ELECTRIC (AND STEAM)

■ 1911: Key development

- Working for Cadillac's design and development department, Charles Kettering invented the electric ignition and starter motor. Cars could now start themselves.
- Kettering later introduced independent suspension, and four-wheel brakes.
- ** By 1930, most of the technology used in automobiles today had already been invented.

1912: Sales of electric vehicles peak 1915: Price of the Model T Ford drops to \$440 (~\$9,000 in today's terms), and in 12 months over 500,000 are sold.

Price of an electric car remains over \$1,000.

1920s: Gasoline-powered vehicles' victory over electric vehicles becomes evident. Production of electric cars come to end.

COME BACK OF ELECTRIC CAR?

- 1996: GM started leasing is EV 1. The first modern electric car.
- 2003: GM took back all of the leases EV 1 and destroyed most of them.

EMISSIONS REGULATIONS

- 1965: Emissions regulations in California introduced
 - Controls on harmful emissions initially introduced in California, the rest of the world soon followed suit.
 - Safety devices also became mandatory before this, manufacturers only included seat belts as optional extras.
- 1967 California created CARB (California Air Resources Board) which regulates air emissions including car emissions
 - California system is more complicated and revolves around car companies earning credit for producing zero emissions vehicles and low emissions vehicles

- 1970 United States created EPA (Environmental Protection Agency) which enforces the Clean Air Act
 - 1975: The Corporate Average Fuel Economy (CAFE) standards are enacted.
 - US wide program
 - Requirements on fuel economy (miles per gallon) of passenger cars.
 - First took effect in 1978 18 mpg.

CA ZEV SALES

ANNUAL SALES

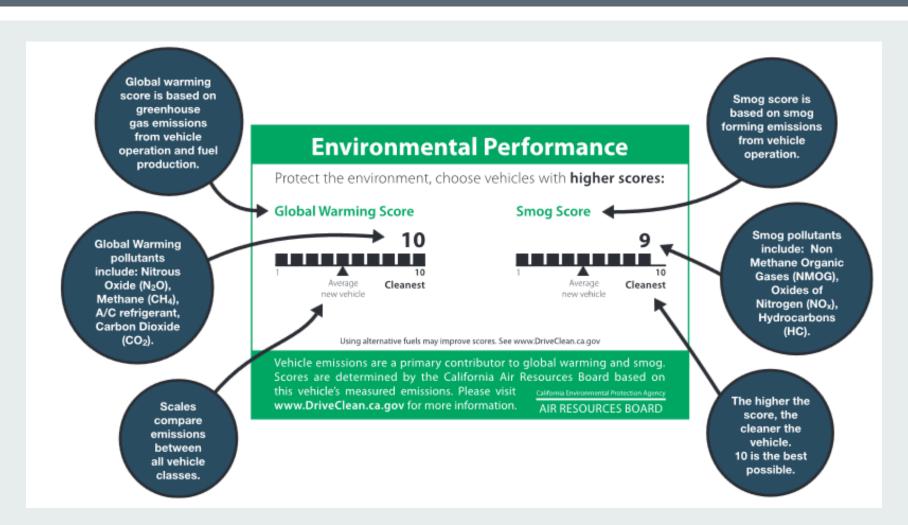
Sales in 2024

443,374

BEV PHEV FCEV 378,910 63,864 600

ANNUAL SALES

Sales in 2023


441,283

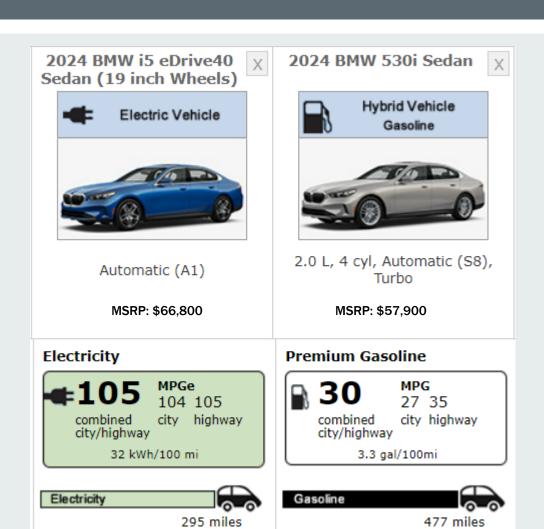
BEV PHEV FCEV 374,668 63,496 3,119

2024 California New Electric Vehicle Sales (companies selling over 10,000 cars)

Brand	Amount	Percentage of BEV	
Tesla	201,167	45%	
Hyudai	24,089	5%	
BMW	21,702	5%	
Mercedes-Benz	19,423	4%	
Kia	17,435	4%	
Ford	17,202	4%	
Jeep	10,935	2%	
Chevy	13,955	3%	
Toyota	13,068	3%	
Audi	12,967	3%	
Rivian	12,196	3%	

EMISSIONS REGULATIONS

TYPES OF ELECTRIC VEHICLES


- Partial Zero Emission Vehicles (PZEV)
- Hybrid
- Transitional Electric Vehicles or Plug-In Hybrid (TZEV)
- Electric Vehicle (BEV)

ELECTRIC VEHICLES

Total Range

Total Range

APTERA

- Calsbad CA, company focused on making the most efficient "car" on the market
- Three wheel, two seater car, top speed 101 mph, 0-60 mph is 4 s.
- All electric car with build in solar panels.
- Crowd funded. The first cars will be sold to the people that gave the most money.
- Most likely will start selling in 2025? (50,000 orders so far)
- Can go up to 400 mi on a charge.
- On a sunny day can generate enough electricity to run the car 40 mi.
- For more information https://www.youtube.com/watch? v=TsYyJJFYRvc

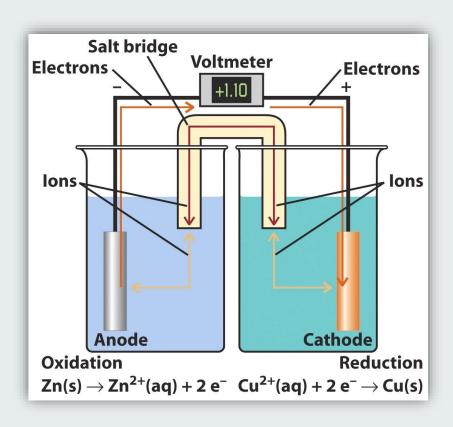
ELECTRIC VEHICLES

Advantages of Electric Cars

Disadvantages of Electric Cars

HOW BATTERIES WORK

- **Batteries:** A stored source of chemical energy that can produce e⁻.
- Batteries contain two types of chemical materials that react and in the process produce e⁻.
- Redox Reaction (Reduction/Oxidation reaction): A reaction in which electrons are transferred.



GALVANIC CELL

- Electrode: Metal contacts.
- Electrolyte: Ionically conducting medium.
- Salt Bridge: Allows for the flow of ions but prohibits reactions from taking place.
- Anode: Is where oxidation occurs. (e⁻ leave from)
- Cathode: Is where reduction occurs. (e⁻ go to)

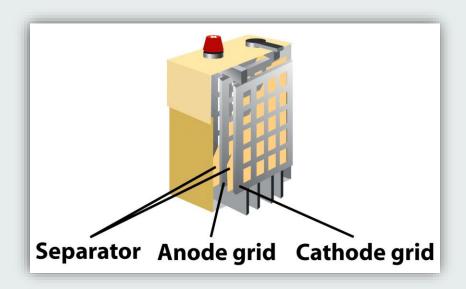
VOLTAGE

What do you think effects the voltage of a battery?

Battery Equation:

VOLTAGE

Standard Reaction Potentials at 298 K			
Half -Reaction	E°(V)		
$F_2 + 2e^- \rightarrow 2F^-$	2.87		
$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$	1.68		
$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	1.51		
Au ³⁺ + 3e ⁻ → Au	1.50		
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	1.33		
$0_2 + 4H^+ + 4e^- \rightarrow 2H_20$	1.23		
$10_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}I_2 + 3H_20$	1.20		
Br ₂ + 2e ⁻ → 2Br	1.09		
AuCl ₄ ⁻ + 3e ⁻ → Au + 4Cl ⁻	0.99		
$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	0.96		
$2Hg^{2+} + 2e^{-} \rightarrow Hg_{2}^{2+}$	0.91		
$Ag^+ + e^- \rightarrow Ag$	0.80		
$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$	0.77		
$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	0.56		
$I_2 + 2e^- \rightarrow 2I^-$	0.54		
Cu ⁺ + e ⁻ → Cu	0.52		
Cu ²⁺ + 2e ⁻ → Cu	0.34		


Standard Reaction Potentials at 2	98 K
Half -Reaction	E°(V)
$SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2O$	0.20
Cu ²⁺ +e ⁻ → Cu ⁺	0.16
2H ⁺ + 2e ⁻ → H ₂	0.00
Fe ³⁺ + 3e ⁻ → Fe	-0.04
Pb ²⁺ + 2e ⁻ → Pb	-0.13
Sn ²⁺ + 2e → Sn	-0.14
Ni ²⁺ + 2e ⁻ → Ni	-0.23
$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.35
Fe ²⁺ + 2e ⁻ → Fe	-0.44
$Cr^{3+} + e^{-} \rightarrow Cr^{2+}$	-0.50
$Cr^{3+} + e^{-} \rightarrow Cr$	-0.73
Zn ²⁺ + 2e ⁻ → Zn	-0.76
$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83
Al ³⁺ + 3e ⁻ → Al	-1.66
$Mg^{2+} + 2e^{-} \rightarrow Mg$	-2.37
Na ⁺ + e ⁻ → Na	-2.71
Li ⁺ + e- → Li	-3.05

TYPES OF BATTERIES USED IN CARS

	Lead Acid	Nickel Metal Hydride	Lithium Ion
Invented	Oldest (1800)	1970	Newest (1980)
Toxic	Most		Least
Expense	Least		Most
Storage capacity (energy per space)	Lowest		Highest
Used in	All cars to run the electrical systems	Toyota Prius Honda Civic Hybrid Ford Escape Hybrid	Tesla Nissan Leaf Honda Fit Rav 4 EV
	Original EV used these batteries	Must be discharged fully to avoid memory problems	*Can be stored for a longer amount of time than the other 2 without loosing its charge *Works best if never fully charged or discharged *Do not work well in extreme temperatures.

BATTERIES

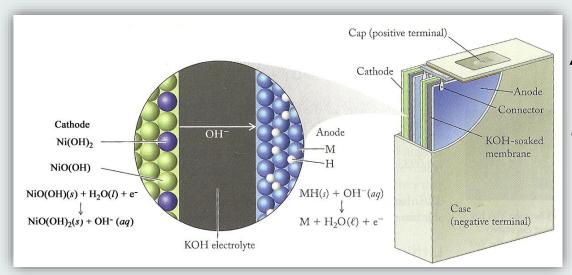
Lead Acid

Anode Electrode: Pb

Cathode Electrode: Pb

covered with PbO₂

Electrolyte: H₂SO₄


Voltage: 12 V

(A) Pb +
$$HSO_4^- \rightarrow PbSO_4 + H^+ + 2e^-$$

(C)
$$PbO_2 + 3H^+ + 2HSO_4^- + 2e^- \rightarrow PbSO_4 + 2H_2O$$

 $Pb + PbO_2 + 2H^+ + 2HSO_4^- \rightarrow 2PbSO_4 + 2H_2O$

BATTERIES

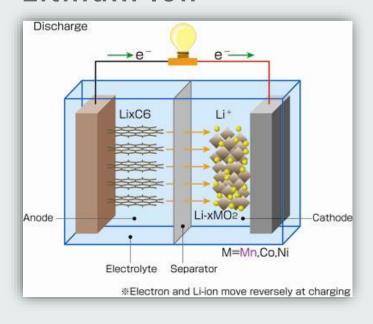
Nickel Metal Hydride

Anode Electrode: MH

Cathode Electrode: NiO(OH)

Electrolyte: KOH

Voltage: ~1.2 V

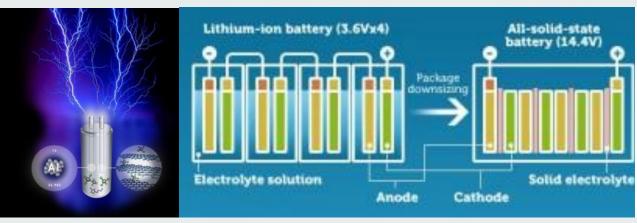

(A) MH + OH⁻
$$\rightarrow$$
 M + H₂O + e⁻

(C) NiO(OH) +
$$H_2O + e^- \rightarrow Ni(OH)_2 + OH^-$$

$$NiO(OH) + MH \rightarrow M + Ni(OH)_2$$

BATTERIES

Lithium Ion



Anode Electrode: Li_xC_6 Cathode Electrode: Li_xMO_2 Electrolyte: Li salt in an organic solvent Voltage: 3.5-4.5V

(A)
$$\text{Li}_{n}\text{C} \rightarrow \text{C} + \text{nLi}^{+} + \text{ne}^{-}$$

(C) $\text{Li}_{1-x}\text{MO}_{2} + \text{nLi}^{+} + \text{ne}^{-} \rightarrow \text{LiMO}_{2}$
 $\text{Li}_{1-x}\text{MO}_{2} + \text{Li}_{y+n}\text{C} \rightarrow \text{Li}_{y}\text{C} + \text{LiMO}_{2}$

BATTERY FUTURE

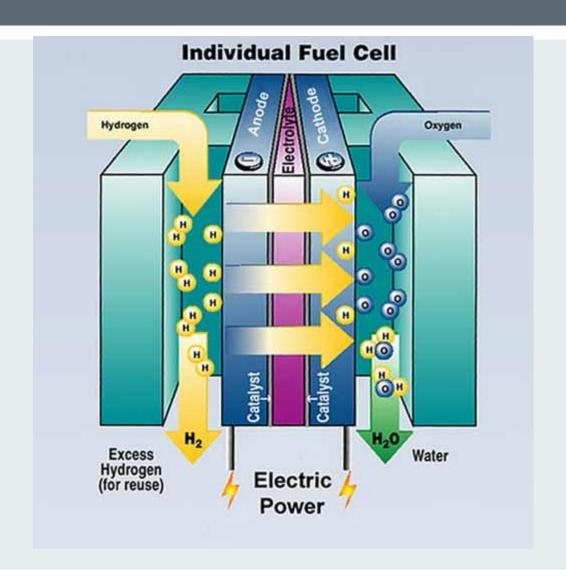
- Future Batteries
 - Aluminum graphite
 - Improve the Li battery (solid state)
 - Maybe not even a battery
 - Supercapacitors
 - Hydrogen fuel cells

The car's body panels serve as a battery The latest nanomaterials made of extremely thin and strong carbon fibre replace the car's steel body panels and can be used in the car's steel body panels and can be used in the car's roof, doors, borned and floor. These panels also double up as the car's battery. Expected range is 130 km when the does not always the car's weight can be ready to prove the car's battery. The car's weight can be ready and the carbon the carbon that the carbon that

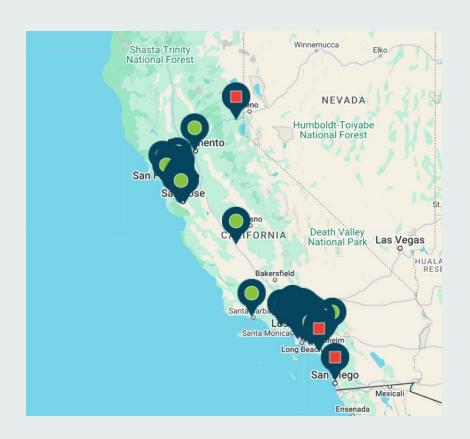
harnessing the energy generated where
 plugging into the mains electricity grid

SOLVING THE BATTERY PROBLEM

- Challenges with EV
 - Range
 - Charging Time
- What solutions are there?
 - Charge car at night
 - Electric charging stations
 - Battery swap stations
 - Other ideas???



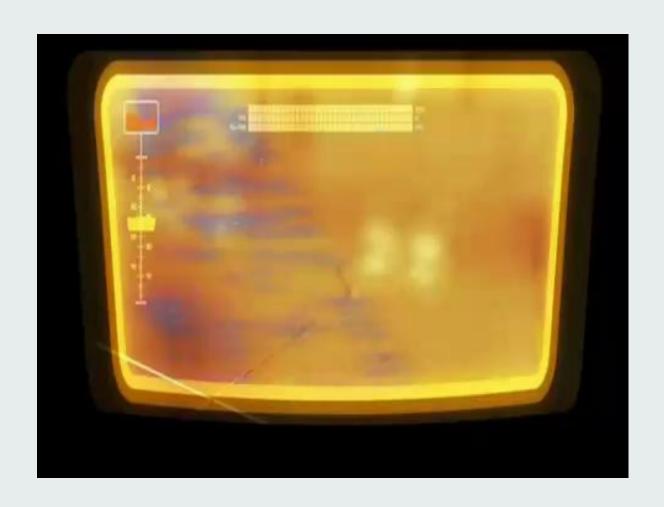
SOLVING THE BATTERY PROBLEM

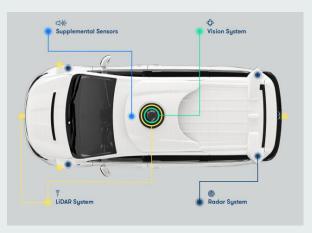


Battery Switch Technology Demonstration

FUEL CELL

FUEL CELL


Green Dot= Full Service Red Square = Off Line


- 1939 World's Fair the Futurama exhibit featured a exhibit by General Motors on the Autonomous Cars
- 1980s a vision-guided vehicles were experimented with in both Europe and the United States (not in traffic)
- 1990s the invention of LIDAR (light radar) and autonomous cars started driving in traffic with some human help.
- 2005 Google developed robotic vehicle
- 2012 Nevada, California, and Florida provides licenses for corporations to drive autonomous cars on their roads
- Many automotive manufacturers such as General Motors, Ford, Mercedes-Benz, Volkswagen, Audi, BMW, Volvo, and Cadillac have begun testing driverless car systems:

LEVELS OF DRIVING AUTOMATION 3 CONDITIONAL DRIVER PARTIAL HIGH **FULL** AUTOMATION AUTOMATION **ASSISTANCE** AUTOMATION AUTOMATION AUTOMATION Manual control. The The vehicle features a ADAS. The vehicle can Environmental detection The vehicle performs all The vehicle performs all capabilities. The vehicle human performs all single automated perform steering and driving tasks under driving tasks under all acceleration. The human still monitors all driving tasks (steering, system (e.g. it monitors can perform most specific circumstances. conditions. Zero human speed through cruise Geofencina is required. attention or interaction acceleration, braking, driving tasks, but control). tasks and can take human override is still Human override is still control at any time. required. an option.

Levels of Self Driving

- Level 0
 - No Driving Automation
- Level 1
 - Driver Assistance
 - Ex: Adaptive cruise control
 - Keeps the car at a fixed distance behind another car but driver has to steer.
- Level 2
 - Partial Driving Automation
 - Vehicles controls both steering and accelerating/decelerating but human must sit in drivers see and can take control any time.
 - Ex: Tesla Autopilot
- Level 3
 - Conditional Driving Automation
 - Have "environmental detection" capabilities (lidar and advance sensor fusion and processing power, built in redundancies should a component fail) and can make informed decision for themselves.
 - No cars sold in the US have this yet. The Audi (Volkswagen) A8L was built with this but because of laws shipped without the key hardware and software to achieve level 3 functionality. However is being sole in Europe.
- Level 4
 - High Driving Automation
 - These vehicles can intervene if things go wrong or there is a system failure. Do not require human interaction in most circumstances.
 - Humans can manual override.
 - Usually have restrictions on restrictions on where the can go and how fast they can go (this is what the rider sharing services are using)
- Level 5
 - Full Driving Automation
 - Cars do not have steering wheels or acceleration/braking pedals.

Autonomous Car

- LIDAR (allows car to see 200 m in all directions)
- Radar
- GPS
- Video cameras
- Position Estimators

ELECTRIC VERTICAL TAKE-OFF AND LANDING (EVTOL)

Pivotal (Helix) - Palo Alto

- Can be purchased (2024)
 - **\$190,000-\$260,000**
- 1 seater
- 20 mi flying range
- https://pivotal.aero/

Doroni (H1)- Florida

- Accepting Preorders, trying to get out by 2026
 - **\$350,000**
- 2 seater
- Can drive short distances
- 60 mi flying range
- https://doroni.io/

Model A (by Alef) - California

- eVTOL
 - Fully electric
- Pod that drivers sit in rotates
- 8 propellers under front and back of car
- Vehicle operates sideways in air
- Will enter production in 2025.
- **\$300,000**

https://alef.aero/

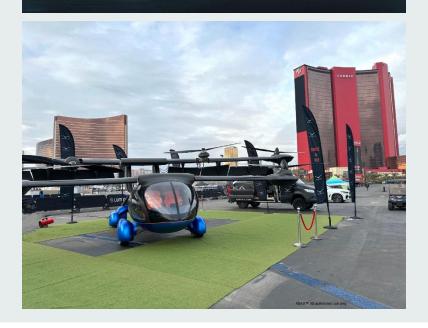
Liberty (Pioneer or Sport) (by Pal V) - Netherlands

- Need a pilot license to fly
- Both available for preorder will deliver in 2026?
- Pioneer Limited Edition only 90 vehicles worldwide (\$599,000) will be delivered before the sport model
- Sport (\$5000,000)
- Price includes flying lessons
- Takes manual intervention to switch
 - Can be done in under 5 minutes
- 817 mi road range
- 310 mi flying range

Switchblade (by Samson Sky) - Oregon

- Need pilot license
- Initial cost = \$170,000
- Can convert between car and airplane in 3 minutes
- Will be sold as an Experimental Category aircraft
 - Owner must build 51% of the vehicle.
 - They will spend 1 week at Samson and be guided by staff.
- Will announce its first official flight soon.
- Deliveries of the vehicles in the next few years

https://www.samsonsky.com/



Aska A5 (by Samson Sky) - California

- Is an electrical Vertical Take-Off and Landing (eVTOL) vehicle
 - This is a hybrid
- A full scale test car has been build and is being tested.
- 4 seater
- Flight range 250 miles
- Company plans to bring to market 2026.

https://www.askafly.com/

