Phenomena: Below are the names and pictures of several organic compounds. Can you determine the naming conventions of these compounds?

a) \(\text{H}_2\text{CCH}_2\text{CH}_2\text{CH}_3 \)
\(\text{H}_3\text{CCH}_2\text{CH}_2 \)
heptane

e) \(\text{H}_2\text{CCH}_2\text{CH}_2 \)
\(\text{CH}_2\text{CH}_2 \)
cyclopentane

b) \(\text{CH}_3 \)
\(\text{H}_2\text{CCH}_2\text{CH}_2 \)
\(\text{CH}_2 \)
methylcyclopentane

d) \(\text{H}_3\text{CCH}_2\text{CH}_2\text{CH}_3 \)
butane

g) \(\text{H}_2\text{CCHCHCHCH}_3 \)
\(\text{CH}_3 \)
2,3-dimethylpentane

f) \(\text{CH}_3 \)
\(\text{H}_2\text{CCHCHCHCH}_3 \)
cyclobutane

i) \(\text{H}_3\text{CCH}_2\text{CH}_2 \)
methylcyclopropane

h) \(\text{CH}_3 \)
\(\text{H}_3\text{CCHCHCHCH}_3 \)
methylbutane

j) \(\text{CH}_3 \)
\(\text{H}_3\text{CCHCHCH}_3 \)
methylpropane

k) \(\text{H}_3\text{CCH}_2\text{CH}_2\text{CH}_2\text{CH}_3 \)
\(\text{H}_3\text{CCH}_2\text{CH}_2\text{CH}_2\text{CH}_3 \)
pentane

l) \(\text{H}_3\text{CCH}_2\text{CH}_2\text{CH}_2\text{CH}_3 \)
\(\text{H}_3\text{CCH}_2\text{CH}_2\text{CH}_2\text{CH}_3 \)
hexane

m) \(\text{H}_3\text{CCH}_2\text{CHCHCHCH}_3 \)
\(\text{H}_3\text{CCH}_2\text{CHCHCHCH}_3 \)
3-ethylhexane

What are the names of the following structures and why?
Chapter 21: Organic and Biochemical Molecules

- Simple Organic Molecules
- Isomers
- Functional Groups
- Organic Reactions
- Polymers
- Biochemistry

Big Idea: The large number of hydrocarbons arise from the ability of carbon atoms to form long chains and rings with one another. The properties of hydrocarbons are dominated by the functional groups present. Functional groups properties are independent of their bonding environment.
Simple Organic Molecules

Structural Representations

Lewis Structure

\[
\begin{align*}
\text{H} & \quad \text{H} \\
\text{H} \quad & \text{C} \quad & \text{H} \\
\text{H} \quad & \text{H}
\end{align*}
\]

Chemical Formula

\[\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3\]

Line notation

\[\text{-----} \quad \text{-----} \quad \text{-----} \]

Chapter 21: Organic and Biochemical Molecules
Simple Organic Molecules

Chapter 21: Organic and Biochemical Molecules

Structural Representations

Lewis Structure

Line Notation

Chemical Formula

\[\text{CH}_2\text{CHC(CH}_3\text{)}_2\text{CH}_2\text{OCH}_3 \]

Note: When other groups of hydrocarbons are coming off of a longer chain of carbons they are put in parentheses in the chemical formula.
Simple Organic Molecules

<table>
<thead>
<tr>
<th>Short Chemical Formula</th>
<th>Long Chemical Formula</th>
<th>Name</th>
<th>Space Filling Model</th>
<th>Short Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>CH₄</td>
<td>Methane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₂H₆</td>
<td>CH₃CH₃</td>
<td>Ethane</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>C₃H₈</td>
<td>CH₃CH₂CH₃</td>
<td>Propane</td>
<td></td>
<td>❌</td>
</tr>
<tr>
<td>C₄H₁₀</td>
<td>CH₃CH₂CH₂CH₃</td>
<td>Butane</td>
<td></td>
<td>~</td>
</tr>
<tr>
<td>C₅H₁₂</td>
<td>CH₃CH₂CH₂CH₂CH₃</td>
<td>Pentane</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simple Organic Molecules

<table>
<thead>
<tr>
<th>Short Chemical Formula</th>
<th>Long Chemical Formula</th>
<th>Name</th>
<th>Space Filling Model</th>
<th>Short Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₆H₁₄</td>
<td>CH₃CH₂CH₂CH₂CH₂CH₃</td>
<td>Hexane</td>
<td></td>
<td>~ ~ ~</td>
</tr>
<tr>
<td>C₇H₁₆</td>
<td>CH₃CH₂CH₂CH₂CH₂CH₂CH₃</td>
<td>Heptane</td>
<td></td>
<td>~ ~ ~ ~</td>
</tr>
<tr>
<td>C₈H₁₈</td>
<td>CH₃CH₂CH₂CH₂CH₂CH₂CH₂CH₃</td>
<td>Octane</td>
<td></td>
<td>~ ~ ~ ~ ~</td>
</tr>
<tr>
<td>C₉H₂₀</td>
<td>CH₃CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃</td>
<td>Nonane</td>
<td></td>
<td>~ ~ ~ ~ ~</td>
</tr>
<tr>
<td>C₁₀H₂₂</td>
<td>CH₃CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃</td>
<td>Decane</td>
<td></td>
<td>~ ~ ~ ~ ~ ~</td>
</tr>
</tbody>
</table>
Simple Organic Molecules

- Rules for Naming Branching Alkanes (C_nH_{2n+2})
 1. The longest continuous chain of carbon atoms determines the root name for the hydrocarbon. Note the longest chain might not be in a straight line.
 2. The longest chain will be named by taking the core name and adding -ane.

<table>
<thead>
<tr>
<th># of Carbons</th>
<th>Core Name</th>
<th># of Carbons</th>
<th>CoreName</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>meth-</td>
<td>6</td>
<td>hex-</td>
</tr>
<tr>
<td>2</td>
<td>eth-</td>
<td>7</td>
<td>hept-</td>
</tr>
<tr>
<td>3</td>
<td>prop-</td>
<td>8</td>
<td>oct-</td>
</tr>
<tr>
<td>4</td>
<td>but-</td>
<td>9</td>
<td>nan-</td>
</tr>
<tr>
<td>5</td>
<td>pent-</td>
<td>10</td>
<td>dec-</td>
</tr>
</tbody>
</table>

\[\text{Example:} \]

\[\text{root name: hexane} \]
Rules for Naming Branching Alkanes \((C_nH_{2n+2})\)

3. When alkane groups appear as a substituent (bonded to a larger alkane), they are named by taking the core name and adding \(-yl\).

4. When halogens are present as substituents they are named using the following:

<table>
<thead>
<tr>
<th>Halogen</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>fluoro</td>
</tr>
<tr>
<td>Cl</td>
<td>chloro</td>
</tr>
<tr>
<td>Br</td>
<td>bromo</td>
</tr>
<tr>
<td>I</td>
<td>iodo</td>
</tr>
</tbody>
</table>
Rules for Naming Branching Alkanes \((C_nH_{2n+2})\)

5. When multiple of the same substituents are present the appropriate prefix is added to the name of the substituent.

<table>
<thead>
<tr>
<th># of the same substituents</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>di-</td>
</tr>
<tr>
<td>3</td>
<td>tri-</td>
</tr>
<tr>
<td>4</td>
<td>tetra-</td>
</tr>
</tbody>
</table>

Example: trimethyl
Rules for Naming Branching Alkanes \((C_nH_{2n+2})\)

6. Number the carbons in the chain so that the lowest number is given to the substituent.

7. If both directions give the same lowest number for the 1st substituent then use the numbering which gives the lowest number for the 2nd substituent.
Rules for Naming Branching Alkanes \((C_nH_{2n+2})\)

8. If two numbering schemes have the same lowest numbering scheme, give the lowest number to the substituent that appears first in the name.

9. In front of each substituent, list the carbon number in which the substituent is bonds to in the alkane. If there are multiple of one type of substituent, multiple numbers will need to be used. Separate multiple numbers with comas. Separate the number from the name with a hyphen.

Example:
- Correct
- Incorrect

Example:
2,2,4-trimethyl
Rules for Naming Branching Alkanes (C_nH_{2n+2})

10. Substituents are listed in alphabetic order with respect to their root name (methyl, ethyl etc.). If multiple substituents are present, they are separated from each other with a hyphen. The substituent that is closest to the root name is combined with the root name.

- Example:
 4-ethyl-2,3-dimethyloctane
Simple Organic Molecules

<table>
<thead>
<tr>
<th>R</th>
<th>isopropyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH(_3)CHCH(_3)</td>
<td>R</td>
</tr>
<tr>
<td>CH(_2)CHCH(_3)</td>
<td>R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>isobutyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH(_3)CHCH(_2)CH(_3)</td>
<td>R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>sec-butyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH(_3)CHCH(_2)CH(_3)</td>
<td>R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>tert-butyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH(_3)</td>
<td>R</td>
</tr>
<tr>
<td>CH(_3)</td>
<td>R</td>
</tr>
</tbody>
</table>

Chapter 21: Organic and Biochemical Molecules
Student Question

Which of the following has the lowest boiling point?

a) Butane
b) Ethane
c) Propane
d) Methane
Rules for Naming Alkene and Alkynes

1. If a double bond is present, the root hydrocarbon is the longest chain that contains the double bond. The root hydrocarbon will be named by adding –ene to the core.

 Example: pentene

2. If a triple bond is present, the root hydrocarbon is the longest chain that contains the triple bond. The root hydrocarbon will be named by adding –yne to the core.

 Example: butyne
Rules for Naming Alkene and Alkynes

3. If multiple double and triple bonds are present the following notation is placed in front of the –ene or –yne suffix which identifies the number of bonds in addition an “a” is added to the root name.

<table>
<thead>
<tr>
<th># of bonds</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>di-</td>
</tr>
<tr>
<td>3</td>
<td>tri-</td>
</tr>
<tr>
<td>4</td>
<td>tetra-</td>
</tr>
</tbody>
</table>

4. The root chain will be numbered so that multiple bonds get the lowest possible number. This takes precedence over giving branching hydrocarbons or halogens.
Rules for Naming Alkene and Alkynes

5. Bonds are numbered in the same order as the carbons.

6. The bond number is placed in front of the root name. If there are multiple double or triple bonds, multiple numbers will need to be used. Separate multiple numbers with commas. Separate the number from the name with a hyphen.

7. Use the rules for naming alkanes to name the rest of the substituents.
Rules for Naming Cyclic Hydrocarbons

1. Use a ring for the root name if the ring has more carbons than any of the other chains.
2. The root name is formed by adding the prefix cyclo- to the core name (indicating the number of carbons).
3. If only single bonds exist in the ring, the suffix –ane is added to the core name.
4. If double bonds exist in the ring, the suffix –ene is added to the core name. If multiple double bonds exist, include di-, -tri-, etc.
5. Number the cyclic hydrocarbon so that double bonds get preference over halogen or hydrocarbon chains.

Examples:
Rules for Naming Cyclic Hydrocarbons

6. Include the number indicating the substituents placement in front of the name of the substituent. If there is only one double bond then the number 1 does not need to be included prior to the core name because the position of the double bond is implied. If there is only 1 substituent and no double bonds, the number does not need to be included because it is implied.

Examples:

- 3-methylcylopentene
- 2-methyl-1,3-cylopentadiene
- bromocylopropane

7. Use rules for naming alkanes to complete the name of the structure.

Example: 1-ethyl-2-methylcylobutane
Shapes of Cyclic Hydrocarbons

Carbon atoms in cycloalkanes are sp\(^3\) hybridized therefore the ideal C-C bond angle is 109.5°.

- Cyclopropane Bond Angle: ~60°
- Cyclobutane Bond Angle: ~90°
- Cyclopentane Bond Angle: 108°
- Cyclohexane
 - Flat Bond Angle: 120°
 - Bent Bond Angle: ~109.5°
Aromatics: A compound that includes a benzene ring as part of its structure

Note: Instead of showing the resonance structures for benzene, the symbol is used to represent benzene.

Note: The ortho/meta/para notation can be used for any ring structure but it is commonly used with aromatics.
Simple Organic Molecules

Rules for Naming Aromatics

1. The same rules are used for naming benzene complexes as other cyclohydrocarbons except instead of using 1,3,5-cyclohexatriene for the root name, benzene is used.

 Example: ethylbenzene

2. The same rules are used for naming toluene complexes as other cyclohydrocarbons except instead of using 1-methyl-1,3,5-cyclohexatriene for the root name, toluene is used. For toluene the methyl group is always counted as the number 1 carbon.

Note: The numbering of the carbons can be different for the same compound depending if you are using toluene or benzene as the root name.
Rules for Naming Aromatics

3. If two substituents are present on benzene or one on toluene the ortho/meta/para naming can be used. Place the following in front of the name when using ortho/meta/para naming.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Start of Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ortho</td>
<td>o-</td>
</tr>
<tr>
<td>meta</td>
<td>m-</td>
</tr>
<tr>
<td>para</td>
<td>p-</td>
</tr>
</tbody>
</table>

Example:
1-bromo-2-ethylbenzene
o-bromoethylbenzene

Example:
4-isobutyltoluene
p-isobutyltoluene
1-isobutyl-4-methylbenzene
p-isobutylmethylbenzene
Student Question

What is the maximum number of structural isomers of C_5H_{12}?

a) 2
b) 3
c) 4
d) 5
e) None of the Above
Isomers

Student Question

What is the maximum number of structural and geometric isomers of \(\text{C}_4\text{H}_8 \)?

a) 3
b) 4
c) 5
d) 6
e) None of the Above
Isomers

1 type of atoms bond to C (CR_4)
2 different atoms (CR_3R^1)

- CR_4: No optical isomers
- CR_3R^1: No optical isomers

3 different atoms ($CR_2R^1R^2$)
4 different atoms ($CRR^1R^2R^3$)

- $CR_2R^1R^2$: No optical isomers
- $CRR^1R^2R^3$: Optical isomers
Functional Groups

Table 21.4

<table>
<thead>
<tr>
<th>Class</th>
<th>Functional Group</th>
<th>General Formula*</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halohydrocarbons</td>
<td>—X (F, Cl, Br, I)</td>
<td>R—X</td>
<td>CH₃I (iodomethane)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>methyl iodide</td>
</tr>
<tr>
<td>Alcohols</td>
<td>—OH</td>
<td>R—OH</td>
<td>CH₃OH (methanol)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>methyl alcohol</td>
</tr>
<tr>
<td>Ethers</td>
<td>—O—</td>
<td>R—O—R’</td>
<td>CH₃OCH₃ (dimethyl ether)</td>
</tr>
<tr>
<td>Aldehydes</td>
<td>—C=H</td>
<td>R=C=H</td>
<td>CH₂O (methanal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(formaldehyde)</td>
</tr>
<tr>
<td>Ketones</td>
<td>—C—</td>
<td>R=C=R’</td>
<td>CH₃COCH₃ (propanone)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(dimethyl ketone or acetone)</td>
</tr>
<tr>
<td>Carboxylic acids</td>
<td>—C=OH</td>
<td>R=C=OH</td>
<td>CH₃COOH (ethanoic acid)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(acetic acid)</td>
</tr>
<tr>
<td>Esters</td>
<td>—C—O—</td>
<td>R=C—O—R’</td>
<td>CH₃COOCH₂CH₃ (ethyl acetate)</td>
</tr>
<tr>
<td>Amines</td>
<td>—NH₂</td>
<td>R—NH₂</td>
<td>CH₃NH₂ (aminomethane)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(methylamine)</td>
</tr>
</tbody>
</table>

*R and R’ represent hydrocarbon fragments.
Alcohols

- H-Bonding occurs for alcohols
- Increases boiling point and melting point from the alkanes
- More soluble in water
- Amphoteric, but better acid than a base

Note: When the alcohol is functioning as an acid, the hydrogen bonded to the oxygen dissociates. When the alcohol is functioning as a base, a hydrogen bonds to the lone pair of electrons on the oxygen.

Primary Alcohol
\[R\text{-}H\text{-}OH \]

Secondary Alcohol
\[R_1\text{-}H\text{-}OH \]

Tertiary Alcohol
\[R_1\text{-}R_3\text{-}OH \]
Rules for Naming Alcohols:-OH

1. The root name is formed by taking the alkane name corresponding to the number of carbons that the alcohol is bonded to, and replacing the e with -ol.

2. If multiple alcohols are present the e is kept on the alkane name and the following is inserted between the alkane name and -ol:

<table>
<thead>
<tr>
<th># of -OH</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>di-</td>
</tr>
<tr>
<td>3</td>
<td>tri-</td>
</tr>
<tr>
<td>4</td>
<td>tetra-</td>
</tr>
</tbody>
</table>

Note: When prefix is put on the e in the alkane name goes back on.
Rules for Naming Alcohols: -OH

3. If the only functional group that is present is the alcohol, the root carbons are numbered such that the alcohol is bonded to the lowest numbered carbon. The number of the carbon that the alcohol is bonded to, is placed in front of the root name.

Example:

Root Name: 3-octanol

4. Follow the remaining rules for naming alkanes and cycloalkanes.

Example:

7-methyl-3-octanol
Carboxylic Acids

- H-Bonding occurs for carboxylic acids
- Increases boiling point and melting point from the alcohols
- Water soluble
- Amphoteric
Rules for Naming Carboxylic Acid: -COOH

1. The root name is formed by taking the alkane name corresponding to the number of carbons that the carboxylic acid is bonded to and replacing the e with -oic acid.

 Example:

 Root Name: pentanoic acid

2. If two carboxyl groups are present, add the suffix -dioic acid to the alkane name.

 Example:

 butanedioic acid

Note: When prefix is put on the e in the alkane name goes back on.
Rules for Naming Carboxylic Acid: -COOH

3. If the only functional group that is present is the carboxylic acid, the root carbons are numbered such that the carboxylic acid is bonded to carbon number 1. Since the carboxylic acid always must be bonded to carbon number 1, no number needs to be included in front of the root name.

Example:

Root Name: pentanoic acid

4. Follow the remaining rules for naming alkanes and cycloalkanes

Example: 3-methylpentanoic acid
Aldehydes and Ketones

- Cannot participate in hydrogen bonding by themselves.
- Short ketones and aldehydes are water soluble.
- Aldehydes are easier oxidized than ketones.

Functional Groups

Ketone

Aldehyde

Aldehydes and Ketones

- Cannot participate in hydrogen bonding by themselves.
- Short ketones and aldehydes are water soluble.
- Aldehydes are easier oxidized than ketones.
Rules for Naming Aldehydes: -CHO

1. The root name is formed by taking the alkane name corresponding to the number of carbons that the aldehyde is bonded to, and replacing the e with -al.

 Example:
 - Root Name: butanal

2. If two aldehydes are present add the suffix -dial to the alkane name.

 Example:
 - butanedial

Note: When prefix is put on the e in the alkane name goes back on.
Rules for Naming Aldehydes: \(-\text{CHO}\)

3. If the only functional group that is present is the aldehyde, the root carbons are numbered such that the aldehyde is bonded to carbon number 1. Since the aldehyde always must be bonded to carbon number 1, no number needs to be included in front of the root name.

Example:

```latex
\text{Root Name: butanal}
```

4. Follow the remaining rules for naming alkanes and cycloalkanes.

Example:

```latex
\text{Example: 3-bromobutanal}
```
Rules for Naming Ketone: \(-\text{C}=\text{O}-\)

1. The root name is formed by taking the alkane name corresponding to the number of carbons that the ketone is bonded to, and replacing the \(\text{e}\) with \(-\text{one}\).

2. If multiple ketones are present the \(\text{e}\) is kept on the alkane name and the following is inserted between the alkane name and \(-\text{one}\):

<table>
<thead>
<tr>
<th># of (=\text{O})</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>di-</td>
</tr>
<tr>
<td>3</td>
<td>tri-</td>
</tr>
<tr>
<td>4</td>
<td>tetra-</td>
</tr>
</tbody>
</table>

Example:
- Root Name: hexanone
- Root Name: hexanedione

Note: When prefix is put on the \(\text{e}\) in the alkane name goes back on.
Functional Groups

- Rules for Naming Ketone: \(-\text{C}=\text{O}-\)

3. If the only functional group that is present is the ketone the root carbons are numbered such that the ketone is bonded to the lowest number carbon. The number of the carbons that the ketone is bonded to is placed in front of the root name.

- Example:

 - Root Name: 2-hexanone

4. Follow the remaining rules for naming alkanes and cycloalkanes.

- Example:

 - 4-ethyl-3-methyl-2-hexanone
Esters

- Fairly high boiling points
- Cannot participate in hydrogen bonding by themselves
- Slightly water soluble (the larger the molecules, the less water soluble)
Rules for Naming Esters: \(-\text{COO}\)-

1. Count the number of carbons in \(R^1(\text{R}_1\text{O}\text{R}^1)\). Take the corresponding core name and add \(-\text{yl}\).

 Example: butyl

2. Count the number of carbons in \(R\) and add 1 \((\text{R}_1\text{O}\text{R}^1)\). Take the corresponding alkane name for \(R+1\) and replace the \(e\) with \(-\text{oate}\).

 Example: hexanoate
Rules for Naming Esters: -COO-

3. The root name of the ester is formed by placing the name in step 1 in front of the name in step 2.

4. The substituents that are bonded to R^1 are placed in front of the R^1 name and the substituents that are bonded to R are placed in front of the R name. This causes the root name to be broken up.

Example:

- Root Name: butyl hexanoate
- Example: 2-methylbutyl-4-methylhexanoate
Amines

- Allows H-Bonding to occur (primary and secondary only).
- Every amino acid contains at least 1 amine (and a carboxylic acid).

\[
\begin{align*}
\text{Primary Amine} & : \quad \text{H} \cdot \tilde{\text{N}} \cdot \text{H} \\
\text{Secondary Amine} & : \quad \text{H} \cdot \tilde{\text{N}} \cdot \text{R}^1 \\
\text{Tertiary Amine} & : \quad \text{R}^2 \cdot \tilde{\text{N}} \cdot \text{R}^1
\end{align*}
\]
Rules for Naming Amines:

1. Find the longest carbon chain. Take the corresponding alkane name and drop the e and add amine.

 Example:

 - Root Name: pentanamine

 ![Pentanamine structure]

2. Number the carbons in the longest chain so that the nitrogen is attached to the lowest number carbon possible. Place the nitrogen attach number in front of the root name.

 Example:

 - Root Name: 2-pentanamine

 ![2-Pentanamine structure]
Rules for Naming Amines:

1. Follow the remaining rules for naming alkanes. If the substituent comes of the nitrogen put a N instead of a number in front of the substituents name.

Example:
4-chloro-\(N,N\)-dimethyl-2-pentanamine
Ethers

- Slightly polar.
- Not very soluble in water.
- Relatively unreactive.
- Most common ether reaction is cleavage of the carbon oxygen bond by a strong acid.

\[
\text{R-O-R}^1
\]
 Functional Groups

Rules for Naming Ethers: ROR₁

1. Count the number of carbons in the shorter R chain. Take the corresponding core name and add –oxy.

Example:

Root Name: ethoxy

2. Number the carbons in the longer chain in order to give the shorter chain the lowest number attachment point. Place the attachment number in front of the root name.

Example:

Root Name: 1-ethoxy

3. Name the longer chain using the rules for naming alkanes.

Example:

1-ethoxy-2,3-dimethypentane
Functional Groups

Student Question

The boiling point of methanol is much higher than that of ethane. This is primarily due to:

a) the significant difference in the molar masses of methanol and ethane.

b) the hydrogen bonding in methanol and the lack of hydrogen bonding in ethane.

c) the significant difference in the molecular sizes of methanol and ethane.

d) the carbon–oxygen bond in the methanol.
Organic Reactions

Hydrogenation Reactions

- **Overall Reaction**
 \[
 \text{H}_2 + \text{C}=\text{C} \overset{\text{Pt}}{\rightarrow} \text{H}_2\text{CCH}_2\text{C}
 \]

- **Mechanism**
 1) \[\text{H}_2\text{Pt} \rightarrow \text{H}_2\text{Pt}\]
 2) \[\text{PtH}_2\text{C} \rightarrow \text{PtH}_2\text{C}\]
 3) \[\text{PtH}_2\text{C} \rightarrow \text{PtH}_2\text{C} + \text{H}_2\text{Pt}\]
Organic Reactions

- **Overall Reaction**
 \[
 \text{C} = \text{C} + \text{H}_2\text{O} \xrightarrow{H^+} \text{C} - \text{C} - \text{OH}
 \]

 Note: The OH will add to more substituted side.

- **Mechanism**
 1) \[
 \text{R} \text{C} = \text{C} \text{R}^1 \text{R}^2 \xrightarrow{H^+} \text{R} \text{C} - \text{C}^+ \text{R}^1 \text{R}^2
 \]
 2) \[
 \text{R} \text{C} - \text{C}^+ \text{R}^1 \text{R}^2 \xrightarrow{H^+} \text{R} \text{C} - \text{C} \text{OH} \text{R}^1 \text{R}^2
 \]
 3) \[
 \text{R} \text{C} - \text{C} \text{OH} \text{R}^1 \text{R}^2 \xrightarrow{H^+} \text{R} \text{C} - \text{C} \text{OH} \text{R}^1 \text{R}^2 + \text{H}^+
 \]

 Note: The more substituents a carbon has the more stable the carbon ion.
Organic Reactions

Overall Reaction

\[\text{C} = \text{C} + \text{HBr} \rightarrow \text{C} - \text{C} - \text{Br} \text{ H} \]

Note: The Br will add to the more substituted side.

Mechanism

1) \[\text{C} = \text{C} \xrightleftharpoons{\text{H-Br}} \text{H} - \text{C} - \text{C}^+ \xrightleftharpoons{} \text{H} - \text{C} - \text{C}^+ \]

Note: The more substituents a carbon has the more stable the carbon ion.

2) \[\text{H} - \text{C} - \text{C}^+ \xrightleftharpoons{} \text{H} - \text{C} - \text{C}^+ \xrightleftharpoons{\text{Br}^-} \text{H} - \text{C} - \text{C} \text{Br} \]

Note: The more substituents a carbon has the more stable the carbon ion.
Halogenation

- **Overall Reaction**

\[\text{C} = \text{C} + \text{Br}_2 \rightarrow \text{C} - \text{C} - \text{Br}_2 \]

- **Mechanism**

1) \(R - C = C - R' \) \(\rightleftharpoons \) \(R - C - C^+ \) + \(Br^- \)

2) \(Br^+ - Br^- \) \(\rightleftharpoons \) \(Br^- \)
Substitution Reactions

✿ Overall Reaction

\[
\begin{align*}
\text{CH}_4 + \text{Cl}_2 & \xrightarrow{h\nu} \text{CH}_3\text{Cl} + \text{HCl} \\
\text{CH}_3\text{Cl} + \text{Cl}_2 & \xrightarrow{h\nu} \text{CH}_2\text{Cl}_2 + \text{HCl} \\
\text{CH}_2\text{Cl}_2 + \text{Cl}_2 & \xrightarrow{h\nu} \text{CHCl}_3 + \text{HCl} \\
\text{CHCl}_3 + \text{Cl}_2 & \xrightarrow{h\nu} \text{CCl}_4 + \text{HCl}
\end{align*}
\]

✿ Mechanism

\[
\begin{align*}
\text{Cl}_2 & \xrightarrow{h\nu} \text{Cl} \cdot \\
\text{CH}_4 + \text{Cl} \cdot & \rightarrow \cdot\text{CH}_3 + \text{HCl} \\
\cdot\text{CH}_3 + \text{Cl} \cdot & \rightarrow \text{CH}_3\text{Cl}
\end{align*}
\]

Note: A dot represents a single e⁻. Structures will single e⁻ are called radicals.
Organic Reactions

Esterification

- **Overall Reaction**
 \[
 R\text{-OH} + R^1\text{-C=OH} \rightarrow H^+ \quad \text{R}^1\text{-C=O-R} + H_2O
 \]

- **Mechanism**
 1. \(R^1\text{-C=O} \rightleftharpoons R^1\text{-C-OH} \)
 2. \(R^1\text{-C-OH} \rightleftharpoons R^1\text{-C-OH} \)
 3. \(H^+ \rightleftharpoons H^+ \)
 4. \(R^1\text{-C=O} \rightleftharpoons R^1\text{-C-OH} + H_2O \)
 5. \(R^1\text{-C-OH} \rightleftharpoons R^1\text{-C=O} + H^+ \)
Oxidation: Addition of electronegative atoms to carbon or removal of hydrogen atoms from carbon.

Reduction: Removal of electronegative atoms from carbon or addition of hydrogen atoms to carbon.

\[
\begin{align*}
R - C - OH & \xrightarrow{[\text{ox}]} R - C = O \\
R^1 - C - OH & \xrightarrow{[\text{ox}]} R^1 - C = O \\
R^1 - C - OH & \xrightarrow{[\text{ox}]} \text{No Reaction}
\end{align*}
\]
Student Question

What might be the product of the oxidation of 2-methyl-1-butanol?

a) 2-methyl-2-butanol
d) Both b and c
c) 2-methylbutanoic acid
e) Both a and c

b) 2-methylbutanal
Polymers

- **Polymers**: Compound in which chains or networks of small repeating units form giant molecules.

- **Addition Polymer**: A polymer formed by adding monomer units together (usually by reacting double bond).

- **Homopolymer**: A polymer formed from a single monomer.

\[n \text{H}_2\text{C}=\text{CH}_2 \xrightarrow{\text{catalyst}} \left(\begin{array}{c} \text{H} \\ \text{C} \\ \text{H} \\ \text{H} \end{array} \right)_n \]

Polyethylene
Other Addition Polymers

<table>
<thead>
<tr>
<th>Monomer</th>
<th>Name</th>
<th>Formula</th>
<th>Polymer</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene</td>
<td>Polyethylene</td>
<td>H₂C=CH₂</td>
<td>(CH₂=CH₂)ₙ</td>
<td>Plastic piping, bottles, electrical insulation, toys</td>
</tr>
<tr>
<td>Propylene</td>
<td>Polypropylene</td>
<td>H₂C=CH₂</td>
<td>CH₃-CH=CH₂</td>
<td>Film for packaging, carpets, lab wares, toys</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>Polycarbonate (PVC)</td>
<td>H₂C=CH₂</td>
<td>CH₃-CH=CH₂</td>
<td>Film for packaging, carpets, lab wares, toys</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>Polyanionitrile (PAN)</td>
<td>H₂C=CH₂</td>
<td>CN</td>
<td>Carpets, fabrics</td>
</tr>
<tr>
<td>Tetrafluoroethylene</td>
<td>Teflon</td>
<td>F₂C=CF₂</td>
<td>CF₂-CF₂</td>
<td>Cooking utensils, electrical insulation, bearings</td>
</tr>
<tr>
<td>Styrene</td>
<td>Polystyrene</td>
<td>H₂C-C</td>
<td>CH₂=CH₂</td>
<td>Containers, thermal insulation, toys</td>
</tr>
<tr>
<td>Butadiene</td>
<td>Polybutadiene</td>
<td>H₂C=CH₂</td>
<td>CH₂=CH₂</td>
<td>Tire tread, coating, resin</td>
</tr>
<tr>
<td>Butadiene and styrene</td>
<td>Styrene-butadiene rubber</td>
<td>H₂C=CH₂</td>
<td>CH₂=CH₂</td>
<td>Synthetic rubber</td>
</tr>
</tbody>
</table>
Polymers

- **Condensation Polymer:** A polymer that forms when two monomers combine by eliminating a small molecule (usually H₂O or HCl)

\[
\begin{align*}
\text{H}_2\text{N}^\cdot\text{(CH}_2\text{)}_n\text{NH}_2 & + \quad \text{n HO}^\cdot\text{-C-\text{(CH}_2\text{)}_4\text{-C-OH}} \\
\text{H}_{\text{N}}^\cdot\text{(CH}_2\text{)}_n\text{N-C-\text{(CH}_2\text{)}_4\text{-C}} & \rightarrow \quad \text{H}_2\text{O}
\end{align*}
\]

- **Copolymer:** A polymer formed from a mixture of different monomers.

- **Polyamide:** A polymer in which the monomers are linked by amide functional group (nitrogen next to double bonded oxygen) formed by condensation.
Polyester: A polymer in which the monomers are linked by ester groups formed by condensation.

$$n \text{HOCH}_2\text{CH}_2\text{OH} + n \text{HO}-\text{C}-\text{C}-\text{OH} \rightarrow$$

Dacron
Consider the polymer:

\[
\left(\begin{array}{ccc}
\text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\
\text{C} - \text{CH}_2 - \text{C} - \text{CH}_2 - \text{C} - \text{CH}_2 - \\
\text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\
\end{array} \right)_n
\]

What monomer(s) is/are needed to produce the above polymer?

a) CH\(_2\)=CH\(_2\) and CH\(_3\)CH=CH\(_2\)

b) CH\(_2\)=C(CH\(_3\))\(_2\)

c) CH\(_3\)CH=CHCH\(_3\)

d) CO and CH\(_2\)=CH\(_2\)

e) None of the Above
Protein: A natural high-molecular-weight polymer formed by condensation reactions between amino acids.

Fibrous Proteins
- Non soluble
- Provide structure integrity and strength

Globular Proteins
- Soluble in Water
- Transport of oxygen and nutrients and act as catalyst to reactions
Amino Acids: Monomers of proteins

R is the Side Chain

Peptide: Molecule formed by a condensation reaction between amino acids.

Peptide Bond: The –CONH- group.

Note: Often peptides are described in terms of the number of units. Ex. dipeptide or polypeptide.
Amino Acid with Nonpolar R Groups (hydrophobic)

- Glycine (Gly)
- Alanine (Ala)
- Valine (Val)
- Leucine (Leu)
- Isoleucine (Ile)
- Proline (Pro)
- Methionine (Met)
- Tryptophan (Trp)
- Phenylalanine (Phe)
Amino Acid with Polar R Groups (hydrophilic)

- Aspartic Acid (Asp)
- Glutamic Acid (Glu)
- Asparagine (Asn)
- Glutamine (Gln)
- Lysine (Lys)
- Arginine (Arg)
- Histidine (His)
- Tyrosine (Tyr)
- Serine (Ser)
- Threonine (Thr)
- Cysteine (Cys)
Primary Structure:
- The sequence of amino acids in the polypeptide chain of a protein.

Secondary Structure:
- The manner in which a polypeptide chain is coiled. (Short range structure).

Note: Secondary structure usually a result of H-Bonding
Tertiary Structure: The shape into which the α–helix and β–sheet sections of a polypeptide are twisted as a result of interactions between peptide groups lying in different parts of the primary structure. (Long range order)

- **H-Bonds:** Requires each amino acid R group to contain groups that can form H-Bonds.
- **Disulfide Bridge:** Requires each amino acid R group to contain sulfur.
- **London Dispersion:** Requires each amino acid R to be nonpolar.
- **Ionic:** Requires the amino acid R groups to contain either COOH or NH$_2$.
- **DNA (deoxyribonucleic acid):** A huge nucleotide polymer having a double-helical structure with complementary bases on the two strands. Its major functions are protein synthesis and the storage and transport of genetic information.

- **RNA (ribonucleic acid):** A nucleotide polymer that transmits the genetic information stored in the DNA to the ribosomes for protein synthesis.
Nucleotides

- Contain 5-carbon sugar

 ![RNA (ribose)](image)
 ![DNA (deoxyribose)](image)

- Contain nitrogen-containing organic base

 ![Adenine (A) (DNA and RNA)](image)
 ![Guanine (G) (DNA and RNA)](image)
 ![Cytosine (C) (DNA and RNA)](image)
 ![Thymine (T) (DNA only)](image)
 ![Uracil (U) (RNA only)](image)
Nucleotides

- Contain a phosphoric acid molecule \((H_3PO_4)\)
DNA structure

- Contain two strands with complementary bases
 - Thymine and Adenine
 - Cytosine and Guanine
DNA is located in the cell nucleus. When cells divide, the DNA unwinds and new complimentary strands are constructed.
RNA Transcription: Process of creating an equivalent RNA copy from a sequence of DNA.

RNA Complimentary Bases

<table>
<thead>
<tr>
<th>DNA Bonding Site</th>
<th>RNA Nucleotide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thymine</td>
<td>Adenine</td>
</tr>
<tr>
<td>Adenine</td>
<td>Uracil</td>
</tr>
<tr>
<td>Cytosine</td>
<td>Guanine</td>
</tr>
<tr>
<td>Guanine</td>
<td>Cytosine</td>
</tr>
</tbody>
</table>
mRNA *(messenger RNA)*: Template for protein synthesis.

tRNA *(transfer RNA)*: RNA molecules that transfer specific amino acids to a growing protein.

RNA Translation: The process in which the genetic code carried by mRNA directs the production of proteins from amino acids.
Carbohydrate: an organic compound containing only carbon, hydrogen and oxygen with the general formula $C_m(H_2O)_n$.

- Purpose of Carbohydrates
 - Food sources
 - Structural material (plants)
 - DNA backbone
Monosaccharides (simple sugars): An individual unit from which carbohydrates are considered to be composed.

<table>
<thead>
<tr>
<th>TABLE 21.8</th>
<th>Some Important Monosaccharides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pentoses</td>
</tr>
<tr>
<td>d-Ribose</td>
<td>CHO</td>
</tr>
<tr>
<td></td>
<td>H-C-OH</td>
</tr>
<tr>
<td></td>
<td>H-C-OH</td>
</tr>
<tr>
<td></td>
<td>CH$_2$OH</td>
</tr>
<tr>
<td>d-Arabinose</td>
<td>CHO</td>
</tr>
<tr>
<td></td>
<td>HO-C-H</td>
</tr>
<tr>
<td></td>
<td>H-C-OH</td>
</tr>
<tr>
<td></td>
<td>H-C-OH</td>
</tr>
<tr>
<td></td>
<td>CH$_2$OH</td>
</tr>
<tr>
<td>d-Ribulose</td>
<td>CH$_2$OH</td>
</tr>
<tr>
<td></td>
<td>C=O</td>
</tr>
<tr>
<td></td>
<td>H-C-OH</td>
</tr>
<tr>
<td></td>
<td>H-C-OH</td>
</tr>
<tr>
<td></td>
<td>CH$_2$OH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Hexoses</th>
</tr>
</thead>
<tbody>
<tr>
<td>d-Glucose</td>
<td>CHO</td>
</tr>
<tr>
<td></td>
<td>H-C-OH</td>
</tr>
<tr>
<td></td>
<td>HO-C-H</td>
</tr>
<tr>
<td></td>
<td>H-C-OH</td>
</tr>
<tr>
<td></td>
<td>H-C-OH</td>
</tr>
<tr>
<td></td>
<td>CH$_2$OH</td>
</tr>
<tr>
<td>d-Mannose</td>
<td>CHO</td>
</tr>
<tr>
<td></td>
<td>HO-C-H</td>
</tr>
<tr>
<td></td>
<td>H-C-OH</td>
</tr>
<tr>
<td></td>
<td>H-C-OH</td>
</tr>
<tr>
<td></td>
<td>CH$_2$OH</td>
</tr>
<tr>
<td>d-Galactose</td>
<td>CHO</td>
</tr>
<tr>
<td></td>
<td>HO-C-H</td>
</tr>
<tr>
<td></td>
<td>H-C-OH</td>
</tr>
<tr>
<td></td>
<td>H-C-OH</td>
</tr>
<tr>
<td></td>
<td>CH$_2$OH</td>
</tr>
<tr>
<td>d-Fructose</td>
<td>CH$_2$OH</td>
</tr>
<tr>
<td></td>
<td>C=O</td>
</tr>
<tr>
<td></td>
<td>HO-C-H</td>
</tr>
<tr>
<td></td>
<td>H-C-OH</td>
</tr>
<tr>
<td></td>
<td>H-C-OH</td>
</tr>
<tr>
<td></td>
<td>CH$_2$OH</td>
</tr>
</tbody>
</table>

Note: Many monosaccharides are more stable in ring structures.
Glycoside Linkage: Carbon-Oxygen-Carbon linkage that join rings together.

Disaccharide: A carbohydrate formed from two monosaccharides.
Take Away From Chapter 21

Big Idea: The large number of hydrocarbons arise from the ability of carbon atoms to form long chains and rings with one another. The properties of hydrocarbons are dominated by the functional groups present. Functional group’s properties are independent of their bonding environment.

- **Simple Organic Molecules**
 - Know how to draw fisher projections (3D representations of 2D) and skeletal formula (line structures) or organic compounds.
 - Know how to name branching alkanes, alkene, and alkynes. (9, 11, 13, 14)
 - Know how to name cyclic hydrocarbons (12, 15)
 - Know fundamental properties of organic molecules (7, 132)
 - Cyclic hydrocarbon rings
 - 5 and 6 member rings are commonly found.
 - 5 membered rings are flat while 6 membered rings exist in the chair or boat configuration.
 - Know how to name aromatic compounds (benzene and toluene) (16)

Numbers correspond to end of chapter questions.
Take Away From Chapter 21

- **Isomers** (27,28,30)
 - Be able to determine the number of structural isomers for a given chemical formula. (5,8,29)
 - Be able to determine if geometric isomers exist. (21,25,26)
 - Double bond or ring structure.
 - 2 different substituents on both atoms of interest.
 - Be able to determine if a compound has an optical isomer (106,112,113,114,116)
 - 4 different groups bonded to a carbon.

- **Functional Groups** (39,40)
 - Be able to recognize and name the following functional groups (37,38,43,44,45,46,49)
 - Alcohol(OH), Carboxylic acid (COOH), Aldehyde(CHO), Ketone(C=O), Esters (COO), Amines(contain N), and Ethers(COC)

Numbers correspond to end of chapter questions.
Take Away From Chapter 21

- **Functional Groups**
 - Know fundamental properties of the functional groups. (40)
 - Which functional group is most soluble in water, polar, etc.
 - Be able to recognize primary, secondary and tertiary alcohols and amines. (41,42)

- **Organic Reactions** (56,61,65)
 - Know the following reactions:
 - \(\text{C} = \text{C} + \text{H}_2 \xrightarrow{\text{Pt}} \text{C} - \text{C} - \text{H} \)
 - \(\text{C} = \text{C} + \text{HBr} \rightarrow \text{C} - \text{C} - \text{Br} - \text{H} \)
 - \(\text{CH}_4 + \text{Cl}_2 \xrightarrow{\text{hv}} \text{CH}_3\text{Cl} + \text{HCl} \)
 - this reaction can continue until all H are replaced by Cl
 - \(\text{C} = \text{C} + \text{H}_2\text{O} \xrightarrow{\text{H}^+} \text{C} - \text{C} - \text{OH} - \text{H} \)
 - \(\text{C} = \text{C} + \text{Br}_2 \rightarrow \text{C} - \text{C} - \text{Br} - \text{Br} \)
 - \(\text{R} - \text{OH} + \text{R}^{1} - \text{C} - \text{OH} \xrightarrow{\text{H}^+} \text{R}^{1} - \text{C} - \text{O} - \text{R} + \text{H}_2\text{O} \)
 - \(\text{R}^{1} - \text{C} - \text{OH} \xrightarrow{[\text{ox}]} \text{R}^{1} - \text{C} - \text{O} - \text{H} \)
Take Away From Chapter 21

- **Polymers** (69)
 - Know the difference between addition polymers and condensation polymers.
 - Be able to determine the structure of the polymer based on the monomers and the monomer based on the structure of the polymer. (72,75,76,77,84)

- **Biochemistry**
 - Know the basic properties of proteins (89,99)
 - Types of structure (primary, secondary, tertiary) (88)
 - Know how to draw the structure of peptides (95,96)
 - Know the basic properties of DNA and RNA (117,119)
 - Know the basic properties of carbohydrates (111)

Numbers correspond to end of chapter questions.