Chapter 8 Applications of Aqueous Equilibrium

Big Idea: Buffer systems maintain the pH value of a solution even when small amounts of acid or bases are added to the system. In order to have a buffer, a weak acid and its conjugate base or a weak base and its conjugate acid must be present.

- Acid/Base Review
- Buffer Solutions
- Titration Curves
- Solubility

Acid/Base Review

Determine the major species in solution:

- Ca(OH)₂
 - Major Species:
- \circ HC₂H₃O₂
 - Major Species:
- HCIO₄
 - Major Species:
- NaCN
 - o Major Species:
- o CH₃NH₃Cl
 - Major Species:

Buffer: A solution that resists any change in pH when small amounts of acid or base are added.

- Buffers Consist of:
 - Weak Acid and its Conjugate Base
 - \circ (HC₂H₃O₂ / NaC₂H₃O₂)
 - Weak Base and its Conjugate Acid
 - o (NH₃ / NH₄CI)

- Step 1: Identify major species in solution.
- **Step 2(a):** Identify <u>IF</u> any reaction will go to completion (this happens if you have H⁺ and a weak base or OH⁻ and a weak acid in your major species). If no reaction goes to completion go to step 3.
- Step 2(b): If a reaction goes to completion, make an "IF" table to determine the major species in solution after the reaction goes to completion (products and excess reactants.) IF tables are in <u>moles not molarity</u>.
- Step 3: Examine major species to see if you have a buffer solution.

Student Question

How many of the following can be mixed to form a buffer solution?

KOH & HF

RbOH & HBr

 $NaC_2H_3O_2$ & HCl H_3PO_4 & HBr

NH₃ & NH₄Cl

- a) 1
- b) 2
- c) 3
- d) 4
- e) 5

Buffer Problems

- Assume that [HA] is constant
- Assume that [A-] is constant

$$HA(aq) \rightleftharpoons H^{+}(aq) + A^{-}(aq)$$

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$

Solve for pH=-log[H+]

$$\frac{K_a}{[H^+]} = \frac{[A^-]}{[HA]}$$

$$log\left(\frac{K_a}{[H^+]}\right) = log\left(\frac{[A^-]}{[HA]}\right)$$

$$log(K_a) - log([H^+]) = log\left(\frac{[A^-]}{[HA]}\right)$$

$$-log([H^+]) = -log([K_a]) + log\left(\frac{[A^-]}{[HA]}\right)$$

$$pH = pK_a + log\left(\frac{[A^-]}{[HA]}\right)$$

Chapter 8: Applications of Aqueous Equilibrium

How to determine pH

Strong Acid
or
Strong Acid
and a
Weak Acid

Strong Base
or
Strong Base
and a
Weak Base

Weak Acid Weak Base

Weak
Acid and
its
Conjugate
Base

Weak Base and its Conjugate Acid

The amount of H⁺/OH⁻ from the weak acid/base is negligible in comparison to the strong acid/base therefore just use the strong acid/base to calculate the pH.

$$pH = -log[H^+]$$

$$pOH = -log[OH^-]$$

 $pH = 14 - pOH$

Ice Table

Situation #1:

Solution #1 (1L)	Add	Solution #2 (1L)
Water	1 drop HCl	0.010 M HCI
[H ⁺]=		[H+]=
pH =		pH =

Situation #2:

Solution #1 (1L)	Add	Solution #2 (1L)
$0.50 \text{ M HC}_2\text{H}_3\text{O}_2 \\ 0.50 \text{ M NaC}_2\text{H}_3\text{O}_2$	1 drop HCI	$0.010 \text{ M HCI} \\ 0.50 \text{ M HC}_2\text{H}_3\text{O}_2 \\ 0.50 \text{ M} \\ \text{NaC}_2\text{H}_3\text{O}_2$
$[H^{+}]=1.8\times10^{-5}M$		[H+]=
pH=4.74		pH =

Student Question

A buffer solution contains 0.0200 M acetic acid and 0.0200 M sodium acetate. What is the pH after 2.0 mmol of NaOH are added to 1.00 L of this buffer?

Helpful Information: $pK_a=4.75$ for acetic acid

- a) 4.75
- b) 4.70
- c) 4.80
- d) 4.84
- e) None of the above

Buffer Capacity: An indication of the amount of acid or base that can be added before a buffer loses its ability to resist the change in pH

- A buffer has the greatest buffer capacity when:
 - there are equal amounts of [HA] and [A-]
 - there are large quantities of [HA] and [A-]

Note: When choosing a buffer, pick a buffer that has a pK_a closest to what you want the pH to be.

• **Equivalence Point:** The stage of a titration when exactly the right volume of solution needed to complete the reaction has been added.

Note: The equivalence point is sometimes called the stoichiometric point.

- Weak Base/ Strong Acid (NH₃/HCI)
 - Calculate the pH at the following four points of a titration curve in which 0.50 M HCl is added to 50. mL of 1.0 M NH₃ $(K_b=1.8\times10^{-5})$.

Weak Base

- \circ Case #1: No acid added (50. mL of 1.0 M NH₃)
- Case #2: 50. mL of HCl added (50. mL of 1.0 M NH₃ and 50. mL of 0.50 M HCl)
- Case #3: 100. mL of HCl added (50. mL of 1.0 M NH₃ and 100. mL of 0.50 M HCl)
- Case #4: 150. mL of HCl added (50. mL of 1.0 M NH₃ and 150. mL of 0.50 M HCl)

- Mark these points on your titration curve
 - a. The equivalence point
 - b. The region with buffering
 - c. $pH = pK_a$
 - d. pH depends only on [A-] (weak base only present)
 - e. pH depends only on [HA] (weak acid only present)
 - f. The pH only depends on the amount of strong acid or base added

Chapter 8: Applications of Aqueous Equilibrium

• What method would you use to calculate the pH at each of the points?

Strong Acid

or
Strong Acid

and a

Weak Acid

Strong Base or Strong Base and a Weak Base

Weak Acid Weak Base

Weak
Acid and
its
Conjugate
Base

Weak Base and its Conjugate Acid

The amount of H⁺/OH⁻ from the weak acid/base is negligible in comparison to the strong acid/base therefore just use the strong acid/base to calculate the pH.

$$pH = -log[H^+]$$

$$pOH = -log[OH^-]$$

 $pH = 14 - pOH$

Ice Table

$$pH = pK_a + log\left(\frac{[A^-]}{[HA]}\right)$$

- Mark these points on your titration curve
 - a. The equivalence point
 - b. The region with buffering
 - c. $pH = pK_a$
 - d. pH depends only on [A-] (weak base only present)
 - e. pH depends only on [HA] (weak acid only present)
 - f. The pH only depends on the amount of strong acid or base added

Solubility

Name	Formula	K _{sp} (25°C)
Barium sulfate	BaSO ₄	1.5×10^{-9}
Calcium carbonate	CaCO ₃	8.7×10^{-9}
Calcium fluoride	CaF ₂	4.0×10^{-11}
Calcium hydroxide	Ca(OH) ₂	1.3×10^{-6}
Calcium sulfate	CaSO ₄	6.1×10^{-5}
Copper(II) sulfide	CuS	8.5×10^{-45}
Iron(II) carbonate	FeCO ₃	2.1×10^{-11}
Iron(II) hydroxide	Fe(OH) ₂	1.8×10^{-15}
Lead(II) chloride	PbCl ₂	1.6×10^{-5}
Lead(II) sulfate	PbSO ₄	1.3× 10 ⁻⁸
Lead(II) sulfide	PbS	7× 10 ⁻²⁹
Magnesium carbonate	$MgCO_3$	1×10^{-15}
Magnesium hydroxide	$Mg(OH)_2$	8.9× 10 ⁻¹²
Silver chloride	AgCl	1.6× 10 ⁻¹⁰
Silver chromate	Ag ₂ CrO ₄	9.0×10^{-12}
Silver iodide	Agl	1.5× 10 ⁻¹⁶

Select values from table 8.5 in book

Solubility

Student Question

What is the molar solubility of CaF₂?

$$K_{sp} = 4.0 \times 10^{-11}$$

- a) $2.1 \times 10^{-4} M$
- b) $3.4 \times 10^{-4} \text{ M}$
- c) $4.3 \times 10^{-4} \text{ M}$
- d) $6.3 \times 10^{-6} M$
- e) None of the above

Take Away From Chapter 8

Big Idea: Buffer systems maintain the pH value of a solution even when small amounts of acid or bases are added to the system. In order to have a buffer, a weak acid and its conjugate base must be present or a weak base and its conjugate acid.

Buffer Solution

- Be able to identity buffer solutions. (15,46,47)
 - Weak acid/conjugate base
 - Weak base/conjugate acid
- Be able to calculate the pH of a buffer solution (21,22,23,27,29,35,37,39,40,42,43,44,48)
 - Henderson-Hasselbalch Equation

$$\bullet pH = pK_a + log\left(\frac{[A^-]}{[HA]}\right)$$

Take Away From Chapter 8

Buffer Solution (Continued)

- Know when a solution has the greatest buffer capacity.(16,49)
 - When there is ample amounts of both [A-] and [HA]
 - When [A-]=[HA]

Titration Curves

- Be able to calculate the pH at any point in a titration curve. (63,64,65,66)
- Be able to draw titration curves for: (54,55,56,57,61)
 - Strong acid/strong base
 - Strong base/strong acid
 - Weak acid/strong base
 - Weak base/strong acid

Take Away From Chapter 8

Solubility

- Be able to calculate the molar solubility of a solid given the K_{sp} . (98)
- Be able to calculate/know the effect on the molar solubility when a common ion is present in solution. (106,107)