Big Idea: A Bronsted-Lowry acid is a proton donor and a Bronsted-Lowry base is a proton acceptor. After an acid/base loses/gains its proton it becomes a conjugate base/acid. Acids and bases can either completely dissociate (strong) or incompletely dissociate (weak). An equilibrium problem must be set up to solve for the pH of a weak acid or base.

Chapter 7 Acids and Bases

- Acids and Bases
- Conjugate Acids/Bases
- Strength of Acids/Bases
- pH/pOH Scales
- pH/pOH of Strong Acids/Bases
- pH/pOH of Weak Acids/Bases
- Acid/Base Properties of Salts
- Acid Rain

Acids and Bases

Acid

- Sour taste (lemon citric acid)
- Dissolve many metals
 (Acid(aq) + metal(s) → salt(aq) + H₂(g))
- Turn litmus paper red

Base

- Bitter taste (unsweetened baker's chocolate)
- Slippery feel (cleaning products)
- Turn litmus paper blue

Acids and Bases

Arrhenius (1884)

Acid: A compound that forms hydrogen ions (H⁺)
in water.

Examples:

- HCl(aq) acid
- CH₄(aq) not an acid because it does not release (H⁺) ions in solution
- **Base:** A compound that forms hydroxide ions (OH-) in water.

Examples:

- NaOH(aq) base
- NH_3 base because $NH_3(aq) + H_2O(I) \rightarrow NH_4^+(aq) + OH^-(aq)$

Bronsted-Lowry (1923)

- Acid: A proton donor.
- Base: A proton acceptor.

Poem -W24

"Equilibrium for funsies"

Today we'll learn a bit about chemistry
That's right, all the tricks that are part of the registry

And while we'll focus on chapter six

We have all the solutions, yes, it's a mix.

Chemical equilibrium, it's a difficult concept

But fear not, for we have a bright prospect

The equilibrium constant, our beloved K

To figure it out there's always a way

At 8 am on a chilly day,

Professor Feldwinn will always say:

You followed all steps, plugged it into the expression

Now there are three ways to solve this hard question,

First, you can try the "guess and check"

Though that will probably break your neck

Then try the quadratic formula with a smile on your face,

But beware, you'll use up notebook space

Finally you can try the method of the assumption

This is the best in terms of time consumption

And this is how you calculate equilibrium concentration and pressure

Hopefully after this, you'll feel a bit fresher.

Acids and Bases

• **Deprotonation:** The loss of a proton from a Bronsted-Lowry acid.

Note: First deprontination is the loss of the first H, the second deprotination is the loss of a second H, and the third deprotination is the loss of a third H.

• **Amphoteric:** A substance that can act as an acid or base.

Example:

• H₂O

Conjugate Acids/Bases

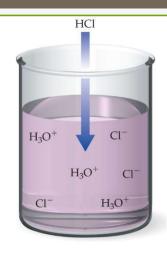
 Conjugate Acid Base Pair: Two substances that are related to each other by the transfer of <u>one</u> proton

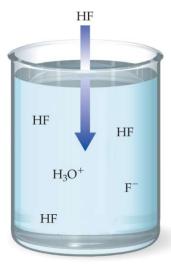
$$\begin{array}{c} \textit{Acid} \xrightarrow{\textit{donates a proton}} \textit{Conjugate Base} \\ \textit{Base} \xrightarrow{\textit{accepts a proton}} \textit{Conjugate Acid} \end{array}$$

Conjugate Acids/Bases

Student Question

Which of the following represent conjugate acid-base pairs? For those pairs that are not conjugates, write the correct conjugate acid or base for each species in the pair.


- a) H_2SO_4 and SO_4^{2-}
- b) $H_2PO_4^-$ and HPO_4^{2-}
- c) HClO₄ and Cl⁻
- d) NH_4^+ and NH_2^-


• Strong Acid or Base:

An acid/base that completely ionizes in solution.

• Weak Acid or Base:

An acid/base that does not completely ionize in solution.

Strong Acids

HCI HNO₃
HBr HCIO₄
HI HCIO₃
HBrO₃ HBrO₄
H₂SO₄ HIO₄

Strong Bases

LiOH Sr(OH)₂ NaOH Ca(OH)₂ KOH Ba(OH)₂ RbOH Mg(OH)₂ CsOH

Name	Formula	Ka
Hydrogen Sulfate Ion	HSO ₄ -	1.2×10^{-2}
Chlorous Acid	HCIO ₂	1.2×10^{-2}
Monochloracetic Acid	$HC_2H_2CIO_2$	1.35×10^{-3}
Hydrofluoric Acid	HF	7.2×10^{-4}
Nitrous Acid	HNO ₂	4.0×10^{-4}
Acetic Acid	$HC_2H_3O_2$	1.8×10^{-5}
Hydrated Aluminum(III) Ion	$[AI(H_2O)_6]^{3+}$	1.4×10^{-5}
Hypochlorous Acid	HOCI	3.5×10^{-8}
Hydrocyanic Acid	HCN	6.2×10^{-10}
Ammonium Ion	NH ₄ ⁺	5.6×10^{-10}
Phenol	HOC ₆ H ₅	1.6×10^{-10}

Note: A strong acid is defined as an acid that has a K_a larger than 1. Not all strong acids have the same K_a . For example the K_a of H_3O^+ is 55, whereas the K_a of HCl is 1×10^6 . Therefore, H_3O^+ is one of the weakest strong acids.

Name	Formula	K _b
Ammonia	NH ₃	1.8 × 10 ⁻⁵
Methylamine	CH ₃ NH ₂	4.38×10^{-4}
Ethylamine	C ₂ H ₅ NH ₂	5.6 × 10 ⁻⁴
Aniline	C ₆ H ₅ NH ₂	3.8× 10 ⁻¹⁰
Pyridine	C_5H_5N	1.7 × 10 ⁻⁹

Note: The stronger the base, the larger the K_b .

Student Question

The K_a values for HPO_4^{2-} and HSO_3^{-} are 4.8×10^{-13} and 6.3×10^{-8} respectively. Therefore, it follows that HPO_4^{2-} is a _____ acid than HSO_3^{-} and PO_4^{3-} is a _____ base than SO_3^{2-} .

- a) weaker, weaker
- b) weaker, stronger
- c) stronger, weaker
- d) stronger, stronger

Is there a relationship between K_a and K_b?

- General Weak Acid Equilibrium Equation
 - o HA(aq) \rightleftharpoons H⁺(aq) + A⁻(aq)

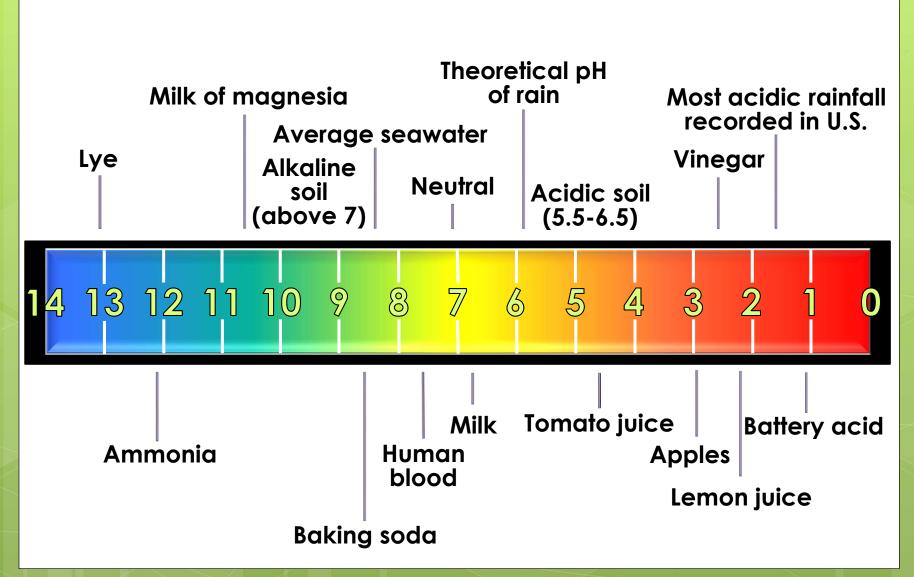
•
$$K_a = \frac{[H^+][A^-]}{[HA]}$$

- General Weak Base Equilibrium Equation
 - $B(aq) + H_2O(I) \rightleftharpoons BH^+(aq) + OH^-(aq)$

•
$$K_b = \frac{[BH^+][OH^-]}{[B]}$$

- Water Equilibrium Equation
 - $H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$

$$\circ K_W = [H^+][OH^-] = 1.0 \times 10^{-14}$$


Note: K_w is known as the ion product constant.

pH/pOH Scale

• How do you tell if a solution acidic, basic, or neutral?

- \circ [H⁺] = [OH⁻] neutral
- [H⁺] > [OH⁻] acidic
- [H⁺] < [OH⁻] basic
- Are the [H⁺] and [OH⁻] related?
 - $K_W = [H^+][OH^-] = 1.0 \times 10^{-14}$
 - For neutral solutions $[H^+] = [OH^-] = 1.0 \times 10^{-7}$
 - \circ [H⁺] > 1.0×10⁻⁷ and [OH⁻] < 1.0×10⁻⁷ acidic
 - \circ [H⁺] < 1.0×10⁻⁷ and [OH⁻] > 1.0×10⁻⁷ basic
- How do you calculate pH?
 - pH=-log[H+]
 - pH = 7 neutral
 - pH < 7 acidic
 - \circ pH > 7 basic

pH/pOH Scale

pH/pOH of Strong Acids/Bases

Student Question

Calculate the pH of 0.25 M barium hydroxide.

- a) 0.60
- b) 13.10
- c) 13.40
- d) 13.70
- e) None of the above

pH/pOH of Weak Acids/Bases

Student Question

What is the pH of a 0.18 M base solution whose conjugate acid has a $K_a = 2.8 \times 10^{-8}$?

- a) 3.59
- b) 9.85
- c) 10.40
- d) 13.25
- e) None of the above

Acid/Base Properties of Salts

Student Question

Is $NH_4C_2H_3O_2$: Helpful Information: $K_bNH_3=1.8\times10^{-5}$ and $K_aHC_2H_3O_2=1.8\times10^{-5}$

- a) Acid
- b) Base
- c) Neutral
- d) More information needed

- opH water ~7,
- pH of unpolluted rain ~5.7
- pH of rain in industrial areas has been recorded at ~2.4

What are the natural causes of acids in

rain?

Source	Causes
CO ₂	Decomposition/Respiration/Fires
NO	Electrical Discharge
SO_2	Volcanic Gases

• What are the man made causes of acids

in rain?

Source	Causes
CO ₂	Fossil Fuel Combustion/Fires
NO	High Temperature Air Combustion
SO_2	Fossil Fuel Combustion

CO_2 (produced from the combustion of C or C_xH_y)

- Coal $C(s) + O_2(g) \rightarrow CO_2(g)$
- Gas $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$
- \circ CO₂(g) + H₂O(l) \rightarrow H₂CO₃(aq)

NO (formed from N at high temperatures)

- $N_2(g) + O_2(g) \xrightarrow{heat} 2NO(g)$
- $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$
- $3NO_2(g) + H_2O(I) \rightarrow 2HNO_3(aq) + NO(g)$

Note: The majority of the NO emissions come from automobiles.

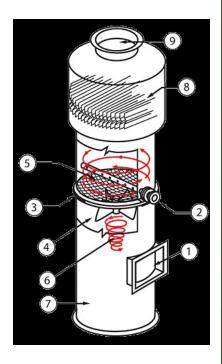
SO₂ (formed from the combustion of S)

- \circ S(s) + O₂(g) \rightarrow SO₂(g)
- \circ 2SO₂(g) + O₂(g) → 2SO₃(g)
- \circ SO₃(g) + H₂O(I) \rightarrow H₂SO₄(aq)

Note: The majority of all SO₂ emissions come from the production of electricity.

Note: Why are we more worried about controlling SO₂ and NO emissions for acid rain?

NO


- Three Way Catalytic converters (1981)

- Scrubbers (in the 1990)
- (limestone slurries are put into the smoke stacks)
- $CaCO_3(s) + H_2SO_4(aq)$ → $CaSO_4(aq) + H_2O(l) + CO_2(g)$

Note: Acid rain level have dropped 65% since 1976.

Big Idea: A Bronsted-Lowery acid is a proton donor and a Bronsted-Lowery base is a proton acceptor. After an acid/base loses/gains its proton it becomes a conjugate base/acid. Acids and bases can either completely dissociate (strong) or incompletely dissociate (weak). An equilibrium problem must be set up to solve for the pH of a weak acid or base.

Acids and Bases

- Know the different acid/base definitions.
 - Arrhenius
 - Acid: Forms H⁺ in water
 - Base: Forms OH- in water
 - Bronsted-Lowery
 - Acid: Proton donor
 - Base: Proton acceptor

Conjugate Acids/Bases (20)

- Be able to recognize conjugate acid base pairs.
 - Pairs that differ by 1 hydrogen atom $(H_3PO_4$ and H_2PO_4 .

Strength of Acids/Bases

- Memorize the strong acids and bases. (24,33)
 - Strong Acids: HCl, HBr, Hl, HNO₃, HBrO₃, HBrO₄, HIO₄ HClO₄, HClO₃, and H₂SO₄ (1st deprotonation)
 - Strong Bases: LiOH, NaOH, KOH, RbOH, CsOH, Sr(OH) $_2$, Ca(OH) $_2$, Ba(OH) $_2$, and Mg(OH) $_2$
- Know the relationship between [H+] and [OH-] (40,41)
 - \circ [H⁺][OH⁻]=1.0×10⁻¹⁴
- \circ Be able to change between K_a and K_b values.
 - $K_a = \frac{K_w}{K_h}$
 - $K_b = \frac{K_w}{K_a}$
- Know that the stronger the acid/base the weaker the conjugate acid/base. (31)
 - Be able to order acids/bases in increasing strength using K_a and/or K_b values (27,28,29,30,69,70)

 Numbers correspond to end of chapter questions.

o pH/pOH Scale (74,75)

• Be able to calculate the pH of a solution.

$$opH = -log[H^+]$$

Be able to calculate the pOH of a solution.

$$opole pOH = -log[OH^-]$$

Be able to convert between pH and pOH

•
$$14 = pH + pOH$$

pH/pOH of Strong Acids/Bases

 Be able to calculate the pH and pOH of strong acids and strong bases.

o pH/pOH of Weak Acids/Bases (79)

- Be able to identify the major species in solution. (51)
- Be able to calculate the pH and pOH of weak acids and bases (ICE table). (47,48,49,52,53,55,61,65)
- Be able to calculate the water solubility of a substance given the pH of a saturated solution. (56)

- Acid/Base Properties of Salts (101,103,105,109,131)
 - Be able to determine if a salt is an acidic, basic, or neutral
 - Be able to calculate the pH of a salt with only one acid/base cation/anion
- Acid Rain