
Big Idea: The change in free energy of a reaction indicates whether a reaction is spontaneous. In any spontaneous process there is always an increase in the entropy of the universe.

Chapter 10 Spontaneity, Entropy, & Free Energy

- Entropy
- ΔS of Physical Reactions
- Isothermal Processes
- 2nd Law of Thermo
- Free Energy
- Hess's Law/ 3rd Law of Thermo
- Equilibrium

• Entropy (S): Entropy is a measure of how energy and matter can be distributed in a chemical system.

# of molecules of left side	# of ways of arranging (microstates)
4	1
3	4
2	6
1	4
0	1

In General:

- **Entropy** increases from solid to liquid to gas corresponding to an increase in positional probability.
- **Entropy** increases when you dissolve a solid in liquid corresponding to an increase in positional probability.
- The larger the **volume** the larger the positional probability and the greater the entropy (n constant).
- The larger the **pressure** the smaller the positional probability and the lower the entropy (n constant).
- The larger the **molecule** the larger the number of relative positions of the atoms resulting in a greater positional probability and a greater entropy.
- The higher the temperature the greater the range of energies, therefore the larger the entropy.

Student Question

Predict which of the following reactions has a negative entropy change.

```
I. CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)

II. NH_3(g) + HCI(g) \rightarrow NH_4CI(s)

III. 2KCIO_4(s) \rightarrow 2KCIO_3(s) + O_2(g)
```

- a) II and III
- b) III
- c) II
- d)
- e) I and II

• **Phase Change:** The condition (for a given pressure, and temperature) at which two different phases are in dynamic equilibrium.

Melting/Freezing

Liquid/Solid

Evaporation/Condensation

Liquid/Gas

Sublimation/Deposition

Solid/Gas

ΔS of Physical Reactions

Calculating ΔS for physical reaction $X(s, T_i) \rightarrow X(g, T_f)$

- **Step 1:** Calculate ΔS to bring to melting point
- Step 2: Calculate ΔS involved in fusion
- Step 3: Calculate ΔS to bring to boiling point
- Step 4: Calculate ΔS involved in vaporization
- **Step 5**: Calculate ΔS to bring to final temperature

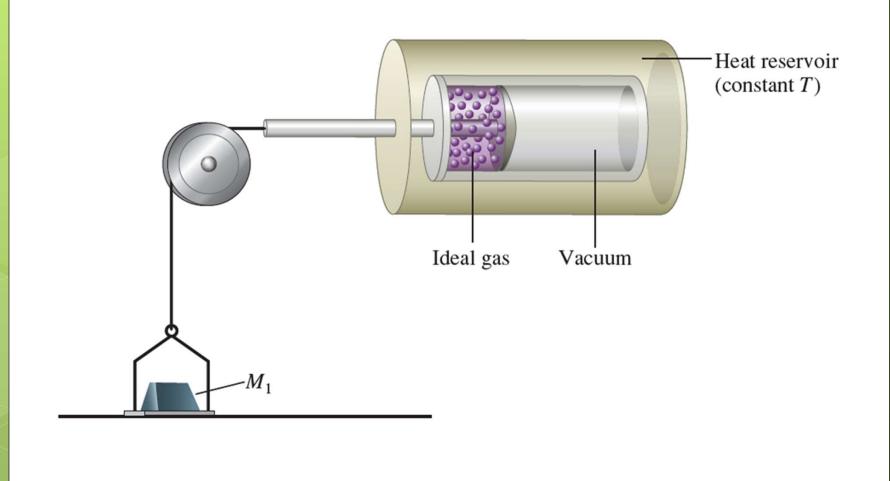
$$\Delta S = mC_{solid} ln\left(\frac{T_M}{T_i}\right)$$

$$\Delta S = \frac{n\Delta H_{fus}}{T}$$

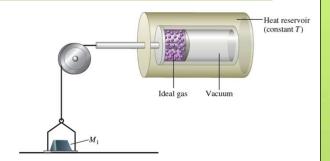
$$\Delta S = mC_{liquid} ln \left(\frac{T_B}{T_M}\right)$$

$$\Delta S = \frac{n\Delta H_{vap}}{T}$$

$$\Delta S = nC_{P_{gas}} ln\left(\frac{T_f}{T_B}\right)$$


ΔS of Physical Reactions

Student Question


What is ΔS for 88.0 g of CO_2 undergoing the following reaction at constant pressure? $CO_2(s, 150. \text{ K}) \rightarrow CO_2(g, 195. \text{ K})$

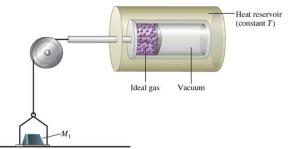
Helpful Information: $T_{sub}=195K$, $\Delta H_{sub}=25.2\frac{kJ}{mol}$, $C_{CO_2(s)}=1.07\frac{J}{g\cdot K}$

- a) $24.9 \frac{J}{K}$
- b) $154 \frac{J}{K}$
- c) $233 \frac{J}{K}$
- d) $283 \frac{J}{K}$
- e) None of the above

Isothermal Expansion of Ideal Gas

Remove the weight

How much work is done?


$$w = -P_{ex}\Delta V$$

What is P_{ex}?

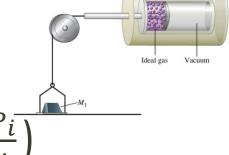
$$P_{ex} =$$

This is known as:

Isothermal Expansion of Ideal Gas

Other ways to expand the gas

For all other cases


Initial: V_i, P_i

$$P = \frac{force}{area} = \frac{mg}{A}$$
 Changing mass changes pressure

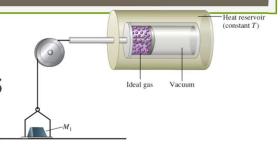
$$P_i = \frac{m_i g}{A}$$

Final:
$$V_f = 4V_i$$
, $P_f =$ therefore mass final =

Isothermal Expansion of Ideal Gas (1 - Step)

Expand
$$V_i \rightarrow V_f(4V_i)$$
; $P_i \rightarrow P_f(\frac{P_i}{4})$

Initial have on m_i , replace with $m_f\left(\frac{m_i}{4}\right)$


Calculate the work

$$w = -P_{ex}\Delta V = -P_{ex}(V_f - V_i)$$

What is
$$P_{ex}$$
? P_{ex} =

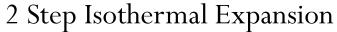
$$W=$$

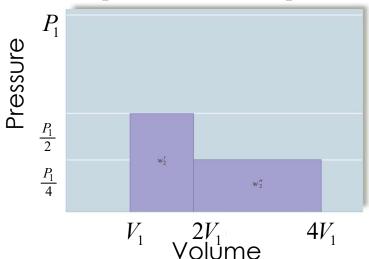
Isothermal Expansion of Ideal Gas (2 - Step)

Expand
$$V_i \rightarrow V_2 (2V_i) \rightarrow V_f$$
; $P_i \rightarrow P_2 \left(\frac{P_i}{2}\right) \rightarrow P_f$

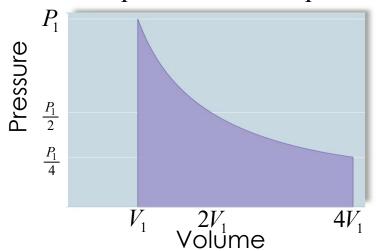
Initial have on m_i , replace with $m_2\left(\frac{m_i}{2}\right)$, then replace m_2 with $m_f\left(\frac{m_i}{4}\right)$

Calculate the work in step 1

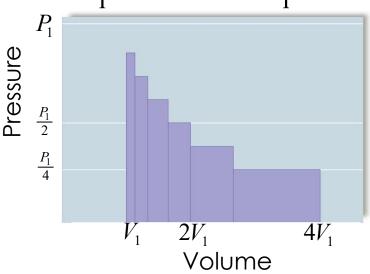

$$w = -P_{ex}\Delta V =$$


Calculate the work in step 2

$$w =$$


Calulate the work total

$$W_{tot} =$$



 ∞ Step Isothermal Expansion

6 Step Isothermal Expansion

 Reversible Process: A process that can be reversed by an infinitesimal change in a variable.

Note: In order for a reversible process to occur the system must be at equilibrium during the entire process.

Student Question

Calculate the ΔS associated with a process in which 5.00 mol of gas expands reversibly at constant temperature T = 25°C from a pressure of 10.0 atm to 1.00 atm.

- a) $28,500\frac{J}{K}$
- b) $95.7\frac{J}{K}$
- c) $-95.7\frac{J}{K}$
- d) $-28,500\frac{J}{K}$
- e) None of the above

2nd Law of Thermo

2nd Law of Thermodynamics: A spontaneous change is accompanied by an increase in the total entropy of the system and its surroundings.

Note: The second law of thermodynamics applies to ΔS_{uni} and not ΔS_{sys} . So far we have only discussed ΔS_{sys} .

Free Energy

Can we relate spontaneity to a change in the system instead of the universe assuming we are at constant temperature and pressure?

Divide Through by T

$$\frac{\Delta G_{Sys}}{T} = \frac{\Delta H_{Sys}}{T} - \frac{T\Delta S_{Sys}}{T}$$

$$\frac{\Delta G_{Sys}}{T} = -\Delta S_{sur} - \Delta S_{sys}$$

$$\frac{\Delta G_{Sys}}{T} = -\Delta S_{sys} - \Delta S_{sys}$$

$$-\frac{\Delta G_{Sys}}{T} = \Delta S_{univ}$$

 $\Delta S_{univ} > 0$ then $\Delta G_{sys} < 0$ spontaneous process

 $\Delta s_{univ} < 0$ then $\Delta G_{sys} > 0$ non spontaneous process

Free Energy

Student Question

Hold the rubber band a short distance from your lips. Quickly stretch it and press it against your lips carefully (don't hurt those delicate lips). Do you experience a warming or cooling sensation? Carefully release the rubber band and experience the sensation. Is stretching a spontaneous or a non-spontaneous process? What are the correct signs for ΔG , ΔH , and ΔS when you allow the rubber band to relax?

	ΔG	ΔΗ	ΔS
a)	_	+	+
b)	_	_	+
C)	+	+	_
d)	+	_	_

Hess's Law / 3rd Law of Thermo

Hess's Law: A reaction enthalpy/free energy/entropy is the sum of the enthalpies/free energies/entropies of any sequence of reactions (at the same temperature and pressure) into which the overall reaction can be divided.

Things to remember:

- \circ If you add reactions together, add $\Delta H/\Delta G/\Delta S$.
- If you flip a reaction, flip the sign of $\Delta H/\Delta G/\Delta S$.
- If you multiply a reaction by a constant, multiply $\Delta H/\Delta G/\Delta S$ by the same constant.

Hess's Law / 3rd Law of Thermo

Student Question

What is ΔG° for $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$ given the following information?

$$2S(s) + 3O_2(g) \rightarrow 2SO_3(g)$$

$$\Delta G^{\circ} = -742 \frac{kJ}{mol}$$

$$S(s) + O_2(g) \rightarrow SO_2(g)$$

$$\Delta G^{\circ} = -300. \frac{kJ}{mol}$$

a)
$$-71 \frac{kJ}{mol}$$

b)
$$-442 \frac{kJ}{mol}$$

c)
$$-671 \frac{kJ}{mol}$$

d)
$$-1042 \frac{kJ}{mol}$$

e) None of the above

Hess's Law / 3rd Law of Thermo

Thermodynamic Data at 298 K			
Substance	$\Delta H_{f}^{\circ} \left(\frac{kJ}{mol} \right)$	$\Delta G_{f}^{\circ} \left(\frac{kJ}{mol} \right)$	$S^{\circ}\left(\frac{J}{mol \cdot K}\right)$
$C_2H_4(g)$	52	68	219
CH ₄ (g)	-75	-51	186
CO ₂ (g)	-393.5	-394	214
$C_2H_6(g)$	-84.7	-32.9	229.5
O(g)	-110.5	-137	198
O ₂ (g)	0	0	205.
CH ₃ CO ₂ H(I)	-484	-389	160.
CH ₃ OH(g)	-201	-163	240.
CH ₃ CH ₂ OH(I)	-278	-175	161
$C_6H_{12}O_6(s)$	-1275	-911	212
HCI(g)	-92	-95	187
$H_2(g)$	0	0	131
H ₂ O(I)	-286	-237	70
H ₂ O(g)	-242	-229	189
Fe(s)	0	0	27

Thermodynamic Data at 298 K			
Substance	$\Delta H_{f}^{\circ} \left(\frac{kJ}{mol} \right)$	$\Delta G_{f}^{\circ} \left(\frac{kJ}{mol} \right)$	$S^{\circ}\left(\frac{J}{mol \cdot K}\right)$
Fe ₂ O ₃ (s)	-826	-740.	90.
$N_2(g)$	0	0	192
$NO_2(g)$	34	52	240.
NO(g)	90.	87	211
$N_2O_4(g)$	10.	98	304
$NH_3(g)$	-46	-17	193
$HNO_3(I)$	-174	-81	156
NH ₄ CI(s)	-314	-203	96
O ₂ (g)	0	0	205
P ₄ O ₁₀ (s)	-2984	-2698	229
$H_3PO_4(s)$	-1279	-1119	110
S _{rhombic} (s)	0	0	32
$H_2S(g)$	-21	-34	206
SO ₂ (g)	-297	-300	248
SO ₃ (g)	-396	-371	257

^{*} Other ΔH°_{f} , ΔG°_{f} , and S° can be found in appendix 4 in the back of your book.

Hess's Law / 3rd Law of Thermo

Thermodynamic Data at 298 K			
Substance	$\Delta H_{f}^{\circ} \left(\frac{kJ}{mol} \right)$	$\Delta G_{f}^{\circ} \left(\frac{kJ}{mol} \right)$	$S^{\circ}\left(\frac{J}{mol \cdot K}\right)$
$NH_3(g)$	-46	-17	193
$O_2(g)$	0	0	205.
NO(g)	90.	87	211
H ₂ O(I)	-286	-237	70.

• What is
$$\Delta S_{rxn}^{\circ}$$
 for $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(l)$?

$$\Delta S_{rxn}^{\circ} = (4) \left(211 \frac{J}{mol \cdot K} \right) + (6) \left(70 \cdot \frac{J}{mol \cdot K} \right) - (4) \left(193 \frac{J}{mol \cdot K} \right) - (5) \left(205 \frac{J}{mol \cdot K} \right) = -533 \frac{J}{mol \cdot K}$$

Equilibrium

Student Question

Consider the reaction: C(graphite) + CO₂(g) \rightleftharpoons 2CO(g) What is $\triangle G(\frac{kJ}{mol})$ at 25°C when the pressures are: $P_{CO} = 0.00050 \ atm$, $P_{CO_2} = 20. \ atm$.

Thermodynamic Data at 298 K

_		
Substance	$\Delta H_{f}^{\circ} \left(\frac{kJ}{mol} \right)$	$S^{\circ}\left(\frac{J}{mol \cdot K}\right)$
C(graphite)	0	5.74
$CO_2(g)$	-393.5	214
CO(g)	-110.5	198

a)
$$212 \frac{kJ}{mol}$$

b)
$$120 \frac{kJ}{mol}$$

c)
$$116 \frac{kJ}{mol}$$

d) 93.7
$$\frac{kJ}{mol}$$

e) None of the above

Equilibrium

• For the reaction below at equilibrium there are many more products then reactants. What is the sign of ΔG° ?

$$\circ$$
 A(g) \rightarrow B(g)

Big Idea: The change in free energy of a reaction indicates whether a reaction is spontaneous. In any spontaneous process there is always an increase in the entropy of the universe.

Entropy

- Know how positional probability and energy probability effects entropy (12,19,&40)
 - Be able to predict the sign of ΔS (7, & 43)
- Be able to calculate S of a system with known number of microstates
 - \circ $S = k_h ln(\Omega)$
- Be able to calculate $\Delta S = S_f S_i$ (29,30,33,48,&49)
 - $\Delta S = \frac{q}{r}$ (constant temperature)
 - $\Delta S = Cln\left(\frac{T_2}{T_1}\right)$ (changing temperature)

ΔS of Physical Reactions

- Know how to calculate ΔS for physical reactions at constant pressure (31)
- Know that a similar multi step process that is used to calculate ΔS during physical reactions can be used for ΔH . (32)

 Problems 23 and 25 review from last chapter.

 Numbers of

Numbers correspond to end of chapter questions.

Isothermal Process

- ullet Know that for an isothermal expansion of an ideal gas $\Delta E=0$
- Know that the maximum work is done for the reversible expansion/contraction of an ideal gas. (28)

•
$$w_{rev} = -nRTln\left(\frac{V_2}{V_1}\right)$$

o 2nd Law of Thermo

- A spontaneous change is accompanied by an increase in the total entropy of the universe.
 - \circ ΔS_{uni} +, spontaneous
 - \bullet ΔS_{uni} -, non spontaneous
 - - $\Delta S_{surr} = -\frac{\Delta H}{T}$ (at constant pressure)

Free Energy

- \circ Be able to calculate the change in free energy (ΔG)
 - $\bullet \Delta G = \Delta H T\Delta S \ (51,56,57,\&64)$
 - Know that ΔH and ΔS are relatively temperature independent while ΔG is temperature dependent. Therefore, the equation above can be use to calculate ΔG at different temperatures.
- Know implications of the sign of ΔG
 - \bullet $\Delta G_{\text{sys is}}$ +, non spontaneous
 - \bullet ΔG_{svs} is –, spontaneous

Hess's Law / 3rd Law of Thermo

- Know that Hess's Law can be applied to ΔG and ΔS as well as ΔH
 - Know how to get ΔG°_{rxn} and ΔS°_{rxn} from other known ΔG°_{rxn} and ΔS°_{rxn} (62)
 - Know how to get ΔG°_{rxn} and ΔS°_{rxn} from table (54,60,61)
- Know that while absolute values of H and G cannot be calculated, an absolute value of S can.
 - 3rd Law Thermodynamics: The entropy of a perfect crystal is 0 K is 0

Equilibrium

- Know that Q and ΔG are related by
 - $\Delta G = \Delta G^{\circ} + RT ln(Q)(68,69,70,\&71)$
 - ullet This equation only changes concentration and not temperature ΔG° must be for the temperature of interest
 - ΔG is +, reverse reaction spontaneous
 - ΔG is -, forward reaction spontaneous
 - ΔG is 0, at equilibrium
- Know that K and ΔG° are related by
 - $\Delta G^{\circ} = -RT \ln(K) (74,78,79,84,86,87,88,91,&109)$
 - \circ ΔG \circ = 0, (K=1) equal amounts of products and reactants at equilibrium
 - \circ ΔG $^{\circ} > 1$, (K<1) more reactants than products at equilibrium
 - ΔG ° < 1, (K>1) more products than reactants at equilibrium