Possible interpretations:

(a) \[A \xrightarrow{h\nu} B + C \] (as B and C are primary photoproducts of A)
(b) \(B \) is \(\cdot \)
(c) \(C \) is \(\cdot \)

(b) \(\therefore B \) is the primary photoproduct and C is formed as a secondary product resulting from photolysis of B.

(c) \[H \xrightarrow{h\nu} D \text{ and } H \xrightarrow{d} E \]

\[3 \text{H}^* \text{ is responsible for the formation of } D, \text{ but not } E. \text{ In the direct photolysis the triplet (i.e., } 3 \text{H}^* \text{) is not formed (therefore D would have been produced). Hence } \]

\[\text{H}^* \text{ is small too small to allow } D. \text{ Thus, } E \text{ is formed from } 3 \text{H}^* \]

(d) \[
\begin{align*}
\{ y & \xrightarrow{h\nu} W + X \\
\} & \xrightarrow{\text{GAS}} W(\text{same size } \psi) + X (\text{1/3 as much}) \\
\Rightarrow & \, X \text{ arises from both } 3 y^* \text{ and } 3 y^* \text{ whereas } W \text{ comes exclusively from } 3 y^*
\end{align*}
\]

(e) \(V \) is derived from \(3 p^* \). \(3 f^* \) has decay paths that take it back to the ground state but not to \(V \).

(\text{as } k_{1v} \text{ and } k_{2p})