1. Examine the so-called Arrhenius function for the reactions illustrated below. Which reaction displays the larger activation energy? What is the activation energy for each reaction? Also determine “logA” for each reaction. How does logA relate to the activation entropy? [The Arrhenius function was encountered in class this, and in the first quarter; it can be derived starting with the Arrhenius equation. Do so!] {See M. Newcomb, Ch 3 of Radicals in Organic Synthesis edited by P. Renaud and M.P. Sibi, Wiley-VCH, vol. 1, 2001}

2. Provide a mechanism to account for the following transformation.

S. Danishefsky, Acc. Chem. Res. 1979 12, 66-72

3. Devise a synthesis of A that uses any of the fragmentation processes we’ve discussed and that you encountered in your reading.