SCHEDULE FOR SECTION 2 (TR)

Ben Hopkins handles inhibitor binding to lysozyme, enzyme kinetics, and mass spectrometry

Fa-Kuen Shieh handles the allantoin project, circular dichroism experiment, and protein crystallography

Week 1

April 1 Introduction to the course. Introduction to computer simulations.
April 3 **All groups**: Allantoin Part I: Conformational analysis in the gas phase.
Group A1: Demonstration of the CD spectrophotometer

Week 2

April 8 **Group A1**: Preparation of solutions for the lysozyme unfolding at 22 °C
Group A2: Demonstration of the CD spectrophotometer and review of the program SCIENTIST
All groups: Allantoin Part II: Monte Carlo simulation in solution

April 10 **Group A1**: Circular dichroism: Unfolding of lysozyme at 22 °C
Group A2: Preparation of solutions for the lysozyme unfolding at 35 °C
Group B1: Demonstration of the CD spectrophotometer and review of the program SCIENTIST
Group B2: UV/VIS binding study of NAG to lysozyme

Week 3

April 15 **Group A1**: UV/VIS binding study of NAG to lysozyme
Group A2: Circular dichroism: Unfolding of lysozyme at 35 °C
Group B1: Preparation of solutions for the lysozyme unfolding at 27 °C
Group B2: Demonstration of the CD spectrophotometer and review of the program SCIENTIST

April 17 **Group A1**: Review of the program SCIENTIST
Group A2: UV/VIS binding study of NAG to lysozyme
Group B1: Circular dichroism: Unfolding of lysozyme at 27 °C
Group B2: Preparation of solutions for the lysozyme unfolding at 32 °C

Week 4

April 22 **All Groups**: Mass spectrometry lecture (Pavlovich)
Group A: MS demonstration and data collection
Group B1: UV/VIS binding study of NAG to lysozyme
Group B2: Circular dichroism: Unfolding of lysozyme at 32 °C

April 24 **All Groups**: NMR lecture (Kahn)
Group A: Lecture and discussion: Enzyme kinetics (Kahn)
Group B: MS demonstration and data collection

Week 5

April 29 **“Circular dichroism: Unfolding of lysozyme” project due**
Group A: Inhibition kinetics with GAPDH or Urate Oxidase
Group B: NMR data acquisition

May 1 **All Groups**: **Unit exam I.** Protein folding, mass spectrometry and ligand binding
Group B: Lecture and discussion: Enzyme kinetics (Kahn)

Week 6

May 6 **“Ligand Binding to Lysozyme” project due**
Group A: NMR data acquisition
Group B: Inhibition kinetics with GAPDH or Urate Oxidase

May 8 **Groups A and B**: Protein crystallography: set up crystallization trials
Week 7
May 13 “Protein Mass Spectrometry” project due.
 Groups A and B: Protein crystallography lecture (Dr. John Perona): from crystals to structure
 Group A: Protein crystallography: microscopic analysis of crystals
 Group B: Free time or a demo of atomic absorption spectroscopy

May 15 Group B: Free time or a demo of atomic absorption spectroscopy
 Group B: Protein crystallography: analysis of diffraction patterns

Week 8
May 20 Groups A and B: Time for data analysis, possibly demonstration of another MS method

May 22 “Enzyme Kinetics” project due.
 Groups A and B: Time for data analysis, possibly demonstration of another MS method

Week 9
May 27 Memorial day for both sections
May 29 “Protein Crystallography” and “Conformational Analysis of Allantoin” projects due.

Week 10
June 3 Unit exam II: Enzyme kinetics, protein crystallography, and NMR.
June 5 Class will meet on June 6 for the poster presentation